Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 108704    DOI: 10.1088/1674-1056/acddd1
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Influence of viscous force on the dynamic process of micro-sphere in optical tweezers

Jing Liu(刘静)1, Xingyu Wu(吴星宇)1, Yimin Feng(冯怡敏)1, Mian Zheng(郑冕)2, and Zhiyuan Li(李志远)3,†
1 College of Computer Science, South-Central Minzu University, Wuhan 430074, China;
2 China Ship Development and Design Center, Wuhan 430064, China;
3 School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
Abstract  With the advantages of noncontact, high accuracy, and high flexibility, optical tweezers hold huge potential for micro-manipulation and force measurement. However, the majority of previous research focused on the state of the motion of particles in the optical trap, but paid little attention to the early dynamic process between the initial state of the particles and the optical trap. Note that the viscous forces can greatly affect the motion of micro-spheres. In this paper, based on the equations of Newtonian mechanics, we investigate the dynamics of laser-trapped micro-spheres in the surrounding environment with different viscosity coefficients. Through the calculations, over time the particle trajectory clearly reveals the subtle details of the optical capture process, including acceleration, deceleration, turning, and reciprocating oscillation. The time to equilibrium mainly depends on the corresponding damping coefficient of the surrounding environment and the oscillation frequency of the optical tweezers. These studies are essential for understanding various mechanisms to engineer the mechanical motion behavior of molecules or microparticles in liquid or air.
Keywords:  optical tweezers      viscous force      equations of Newtonian mechanics      Runge-Kutta method  
Received:  24 April 2023      Revised:  02 June 2023      Accepted manuscript online:  13 June 2023
PACS:  87.80.Cc (Optical trapping)  
  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11804399), the Special Funds for Basic Scientific Research at the Central University of SouthCentral University for Nationalities (Grant No. CZQ20018), and Special Funds for Basic Scientific Research at Central Universities (Grant No. YZZ17005).
Corresponding Authors:  Zhiyuan Li     E-mail:  phzyli@scut.edu.cn

Cite this article: 

Jing Liu(刘静), Xingyu Wu(吴星宇), Yimin Feng(冯怡敏), Mian Zheng(郑冕), and Zhiyuan Li(李志远) Influence of viscous force on the dynamic process of micro-sphere in optical tweezers 2023 Chin. Phys. B 32 108704

[1] Liu J and Li Z 2018 Micromachines 9 232
[2] Svak V, Brzobohaty O, Siler M, Jakl P, Kanka J, Zemanek P and Simpson S H 2018 Nat. Commun. 9 5453
[3] Gieseler J, Deutsch B, Quidant R and Novotny L 2012 Phys. Rev. Lett. 109 103603
[4] Cao Q, Luo X Y, Gao K Y, Wang X R, Chen D M and Wang R Q 2012 Chin. Phys. B 21 043203
[5] Bateman J, Nimmrichter S, Hornberger K and Ulbricht H 2014 Nat. Commun. 5 4788
[6] Rashid M, Tufarelli T, Bateman J, Vovrosh J, Hempston D, Kim M S and Ulbricht H 2016 Phys. Rev. Lett. 117 273601
[7] Gieseler J, Novotny L and Quidant R 2013 Nat. Phys. 9 806
[8] Ranjit G, Cunningham M, Casey K and Geraci A 2016 Phys. Rev. A 93 053801
[9] Geraci A A, Papp S B and Kitching J 2010 Phys. Rev. Lett. 105 101101
[10] Moore D C, Rider A D and Gratta G 2014 Phys. Rev. Lett. 113 251801
[11] Lehmuskero A, Johansson P, Rubinsztein-Dunlop H, Tong L and Käll M 2015 ACS Nano 9 3453
[12] Yan Z and Scherer N F 2013 J. Phys. Chem. Lett. 4 2937
[13] Hansen P M, Bhatia V K, Harrit N and Oddershede L 2005 Nano Lett. 5 1937
[14] Urban A S, Carretero-Palacios S, Lutich A A, Lohmuller T, Feldmann J and Jackel F 2014 Nanoscale 6 4458
[15] Lehmuskero A, Ogier R, Gschneidtner T, Johansson P and Kall M 2013 Nano Lett. 13 3129
[16] Mishra P C, Mukherjee S, Nayak S K and Panda A 2014 Int. Nano Lett. 4 109
[17] He Y, Jin Y, Chen H, Ding Y, Cang D and Lu H 2007 Int. J. Heat Mass Transfer 50 2272
[18] Volpe G and Volpe G 2013 Am. J. Phys. 81 224
[19] Di Leonardo R, Ruocco G, Leach J, Padgett M J, Wright A J, Girkin J M, Burnham D R and McGloin D 2007 Phys. Rev. Lett. 99 010601
[20] Huang R, Chavez I, Taute K M, Lukić B, Jeney S, Raizen M G and Florin E L 2011 Nat. Phys. 7 576
[21] Liu J, Zhang C, Zong Y, Guo H and Li Z Y 2015 Photon. Res. 3 265
[22] Beal and Carlton 1946 Trans. AIME 165 94
[23] Azevedo T N and Rizzi L G 2020 J. Phys.: Conf. Ser. 1483 012001
[24] Jing L, Mian Z, Zhengjun X and Zhiyuan L 2021 OEA 4 200015
[25] Simoncelli S, Johnson S, Kriegel F, Lipfert J and Feldmann J 2017 ACS Photon. 4 2843
[26] Liu J, Wen J, Zhang Z, Liu H and Sun Y 2015 Microsyst. Nanoeng. 1 15020
[27] Woodside M T and Block S M 2014 Annu. Rev. Biophys. 43 19
  • 1. .mp4(8515KB)

  • 2. .mp4(18515KB)

[1] Tunable phonon-atom interaction in a hybrid optomechanical system
Yao Li(李耀), Chuang Li(李闯), Jiandong Zhang(张建东), Ying Dong(董莹), and Huizhu Hu(胡慧珠). Chin. Phys. B, 2023, 32(4): 044213.
[2] Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺). Chin. Phys. B, 2022, 31(8): 088103.
[3] In situ calibrating optical tweezers with sinusoidal-wave drag force method
Li Di (李迪), Zhou Jin-Hua (周金华), Hu Xin-Yao (呼新尧), Zhong Min-Cheng (钟敏成), Gong Lei (龚雷), Wang Zi-Qiang (王自强), Wang Hao-Wei (王浩威), Li Yin-Mei (李银妹). Chin. Phys. B, 2015, 24(11): 118703.
[4] Direct discontinuous Galerkin method for the generalized Burgers–Fisher equation
Zhang Rong-Pei (张荣培), Zhang Li-Wei (张立伟). Chin. Phys. B, 2012, 21(9): 090206.
[5] Improvement of the axial trapping effect using azimuthally polarised trapping beam
Li Xue-Cong(李雪璁) and Sun Xiu-Dong(孙秀冬). Chin. Phys. B, 2010, 19(11): 119401.
[6] Theoretical study of the trapping efficiency of an optical tweezers array system
Li Qin(李勤), Feng Wan-Li(冯万力), Hu Xiao-Ming(胡晓明), Cao Qun(曹群), Sha Ding-Guo(沙定国), and Lin Jia-Ming(林家明) . Chin. Phys. B, 2008, 17(2): 726-735.
[7] Systematical study of the trapping forces of optical tweezers formed by different types of optical ring beams
Xu Sheng-Hua (徐升华), Li Yin-Mei (李银妹), Lou Li-Ren (楼立人). Chin. Phys. B, 2006, 15(6): 1391-1397.
[8] Oscillatory disturbance in force calibration of optical tweezers
Liu Chun-Xiang (刘春香), Guo Hong-Lian (郭红莲), Jiang Yu-Qiang (降雨强), Li Zhao-Lin (李兆霖), Cheng Bing-Ying (程丙英), Zhang Dao-Zhong (张道中). Chin. Phys. B, 2005, 14(4): 729-733.
[9] Computer simulation of the collision frequency of two particles in optical tweezers
Xu Sheng-Hua (徐升华), Li Yin-Mei (李银妹), Lou Li-Ren (楼立人), Sun Zhi-Wei (孙祉伟). Chin. Phys. B, 2005, 14(2): 382-385.
[10] EFFECT OF SPHERICAL ABERRATION INTRODUCED BY WATER SOLUTION ON TRAPPING FORCE
Yao Xin-cheng (姚新程), Li Zhao-lin (李兆霖), Guo Hong-lian (郭红莲), Cheng Bing-ying (程丙英), Han Xue-hai (韩学海), Zhang Dao-zhong (张道中). Chin. Phys. B, 2000, 9(11): 824-826.
[11] CONSTRUCTION OF AN OPTICAL TWEEZERS—CALCULATION AND EXPERIMENTS
Sun Wei (孙巍), Wang Yi-qiu (王义遒), Gao Chong-ming (高崇明). Chin. Phys. B, 2000, 9(11): 855-860.
No Suggested Reading articles found!