|
|
|
Experimental and theoretical study on electronic structure of toluene by electron momentum spectroscopy |
| Guangqing Chen(陈广庆)1, Tuo Liu(刘拓)1, Yuting Zhang(张雨亭)1, Chenghong Zou(邹成宏)1, Maomao Gong(宫毛毛)2,†, Song-Bin Zhang(张松斌)2, Chunkai Xu(徐春凯)1, Enliang Wang(王恩亮)1, Xu Shan(单旭)1,‡, and Xiangjun Chen(陈向军)1 |
1 Hefei National Research Center for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China; 2 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China |
|
|
|
|
Abstract The binding energy spectra and electron momentum distributions (EMDs) of valence orbitals in toluene molecule were measured by (e, 2e) electron momentum spectrometer. A comprehensive analysis of molecular vibrational effects on the EMDs was conducted through harmonic analytical quantum mechanical approach calculations and molecular dynamics simulations within the plane wave impulse approximation (PWIA). Furthermore, the multicenter three-distorted-wave method was employed to investigate the validity of the PWIA. A comparison between experimental measurements and theoretical predictions demonstrates that molecular vibrations have negligible effects on the EMDs, whereas the distorted-wave effects are obvious, particularly in large momentum regions.
|
Received: 16 April 2025
Revised: 09 May 2025
Accepted manuscript online: 27 May 2025
|
|
PACS:
|
34.80.Gs
|
(Molecular excitation and ionization)
|
| |
31.15.ae
|
(Electronic structure and bonding characteristics)
|
| |
31.15.V-
|
(Electron correlation calculations for atoms, ions and molecules)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12127804) and the Supercomputing Center of University of Science and Technology of China. |
Corresponding Authors:
Maomao Gong, Xu Shan
E-mail: gongmm@snnu.edu.cn;xshan@ustc.edu.cn
|
| About author: 2025-113402-250670.pdf |
Cite this article:
Guangqing Chen(陈广庆), Tuo Liu(刘拓), Yuting Zhang(张雨亭), Chenghong Zou(邹成宏), Maomao Gong(宫毛毛), Song-Bin Zhang(张松斌), Chunkai Xu(徐春凯), Enliang Wang(王恩亮), Xu Shan(单旭), and Xiangjun Chen(陈向军) Experimental and theoretical study on electronic structure of toluene by electron momentum spectroscopy 2025 Chin. Phys. B 34 113402
|
[1] Camilloni R, Guidoni A G, Tiribelli R and Stefani G 1972 Phys. Rev. Lett. 29 618 [2] Weigold E, Hood S T and Teubner P J O 1973 Phys. Rev. Lett. 30 475 [3] McCarthy I E, Ugbabe A, Weigold E and Teubner P J O 1974 Phys. Rev. Lett. 33 459 [4] Cook J P D, Mitroy J and Weigold E 1984 Phys. Rev. Lett. 52 1116 [5] Zheng Y, McCarthy I E, Weigold E and Zhang D 1990 Phys. Rev. Lett. 64 1358 [6] Zheng Y, Neville J J and Brion C E 1995 Science 270 786 [7] Zhang Z, Shan X, Wang T, Wang E L and Chen X J 2014 Phys. Rev. Lett. 112 023204 [8] Weigold E and McCarthy I E 1999 Electron Momentum Spectroscopy (New York: Springer) pp. 1-137 [9] McCarthy I 1995 Aust. J. Phys. 48 1 [10] Madison D H, Calhoun R V and Shelton W N 1977 Phys. Rev. A 16 552 [11] Brunger M J, Braidwood S W, McCarthy I E and Weigold E 1994 J. Phys. B: At., Mol. Opt. Phys. 27 L597 [12] Brion C E, Zheng Y, Rolke J, Neville J J, McCarthy I E and Wang J 1998 J. Phys. B: At., Mol. Opt. Phys. 31 L223 [13] Ren X G, Ning C G, Deng J K, Su G L, Zhang S F and Huang Y R 2006 Phys. Rev. A 73 042714 [14] Ren X G, Ning C G, Deng J K, Zhang S F, Su G L, Huang F and Li G Q 2005 Phys. Rev. Lett. 94 163201 [15] Ning C G, Ren X G, Deng J K, Su G L, Zhang S F and Li G Q 2006 Phys. Rev. A 73 022704 [16] Ren X G, Ning C G, Deng J K, Zhang S F, Su G L, Huang Y R and Li G Q 2006 J. Electron. Spectrosc. Relat. Phenom. 151 92 [17] Watanabe N, Yamazaki M and Takahashi M 2012 J. Chem. Phys. 137 114301 [18] Shojaei S H R, Morini F and Deleuze M S 2013 J. Phys. Chem. A 117 1918 [19] Xu Z F, Hu P F,Wang E L, Xu S Y,Wang X, Zhao Y T, Deng J K, Ning C G and Ren X G 2019 Phys. Rev. A 99 062705 [20] Ding L, Wang E L, Xu Z F, Wu Y F, Deng J K, Ning C G and Ren X G 2020 Chem. Phys. 535 110794 [21] Gong M M, Li X Y, Zhang S B, Niu S S, Ren X G, Wang E L, Dorn A and Chen X J 2018 Phys. Rev. A 98 042710 [22] Gong M M, Zhang Y T, Li X Y, Zhang S B, Shan X and Chen X J 2022 Phys. Rev. A 105 042805 [23] Zhang Y T, Gong M M, Liu Z H, Niu S S, Shan X and Chen X J 2023 J. Phys. Chem. A 127 1252 [24] Trost B, Stutz J and Platt U 1997 Atmos. Environ. 31 3999 [25] Serralheiro C, Duflot D, da Silva F F, Hoffmann S V, Jones N C, Mason N J, Mendes B and Limao-Vieira P 2015 J. Phys. Chem. A 119 9059 [26] Poli D, Carbognani P, Corradi M, Goldoni M, Acampa O, Balbi B, Bianchi L, Rusca M and Mutti A 2005 Respir. Res. 6 71 [27] Kischkel S, Miekisch W, Sawacki A, Straker E M, Trefz P, Amann A and Schubert J K 2010 Clin. Chim. Acta 411 1637 [28] sbrink L, Fridh C and Lindholm E 1972 Chem. Phys. Lett. 15 567 [29] Palmer M H, Moyes W, Spiers M and Ridyard J N A 1978 J. Mol. Struct. 49 105 [30] Kobayoshi T 1978 Phys. Lett. A 69 105 [31] Kimura K, Katsuwata S, Achiba Y, Yamazaki T and Iwata S 1981 Handbook of HeI photoelectron spectra of fundamental organic molecules: ionization energies, ab initio assignments, and valence electronic structure for 200 molecules (Tokyo: Japan Scientific Societies Press) p. 189 [32] Klasinc L, Kovac B and Gusten H 1983 Pure Appl. Chem. 55 289 [33] Shaw D A, Holland D M P, MacDonald M A, Hayes M A, Shpinkova L G, Rennie E E, Johnson C A F, Parker J E and von Niessen W 1998 Chem. Phys. 230 97 [34] Yamazaki M, Tang Y G and Takahashi M 2016 Phys. Rev. A 94 052509 [35] Tang Y G, Shan X, Liu Z H, Niu S S, Wang E L and Chen X J 2018 Rev. Sci. Instrum. 89 033101 [36] Becke A D 1993 J. Chem. Phys. 98 5648 [37] Lee C T, Yang W T and Parr R G 1988 Phys. Rev. B 37 785 [38] Dunning T H Jr. 1989 J. Chem. Phys. 90 1007 [39] Barbatti M, Ruckenbauer M, Plasser F, Pittner J, Granucci G, Persico M and Lischka H 2014 WIREs Comput. Mol. Sci. 4 26 [40] Frisch M J, Trucks G, Schlegel H B, et al. Gaussian, Inc., Wallingford C T, 2009 [41] Duffy P, Cassida M E, Brion C E and Chong D P 1992 Chem. Phys. 159 347 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|