|
|
|
Stabilizing 459 nm passive optical clock for pumping 1470 nm active optical clock |
| Haoyang Wu(吴浩洋)1,2, Zhiqiang Wen(温智强)1,2, Chen Wang(王琛)1,†, Zhenfeng Liu(刘珍峰)3, Jingbiao Chen(陈景标)4,5, Shougang Zhang(张首刚)1,2, and Deshui Yu(于得水)1,6 |
1 National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Zhejiang Faraday Laser Technology Company Limited, Wenzhou 325000, China; 4 State Key Laboratory of Photonics and Communications, Institute of Quantum Electronics, School of Electronics, Peking University, Beijing 100871, China; 5 Hefei National Laboratory, Hefei 230088, China; 6 Key Laboratory of Time Reference and Applications, Chinese Academy of Sciences, Xi'an 710600, China |
|
|
|
|
Abstract Optical clocks with thermal atoms are characterized by compact size, simple structure, reduced weight, and low power consumption and have the potential for broad out-of-the-lab and commercial applications. Here, we demonstrate a 459~nm optical clock based on the 6S$_{1/2}$—7P$_{1/2}$ transition in thermal $^{133}$Cs atoms. Two methods, modulation transfer spectroscopy (MTS) and frequency modulation spectroscopy (FMS), are employed to stabilize the frequency of a 459~nm commercial laser to the atomic transition. The MTS-MTS and MTS-FMS beat-note measurements show short-term frequency stabilities of $3.7\times10^{-13}/\sqrt{\tau}$ and $6.4\times10^{-13}/\sqrt{\tau}$, respectively, at the averaging time $\tau$. The 459~nm passive optical clock further serves as the pump for an active 1470~nm optical clock based on the cavityless lasing. The resultant 1470~nm output power reaches over 10 μW and the pump-beam-induced light shift is estimated to be $2\pi\times11$~Hz with a fractional uncertainty of $2.4\times10^{-18}$. These results demonstrate the feasibility of hybridizing passive and active optical clocks, providing a promising route toward compact multi-wavelength optical frequency standards.
|
Received: 22 June 2025
Revised: 20 August 2025
Accepted manuscript online: 26 August 2025
|
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
| |
42.62.Fi
|
(Laser spectroscopy)
|
| |
43.58.Hp
|
(Tuning forks, frequency standards; frequency measuring and recording instruments; time standards and chronographs)
|
|
| Fund: D.Y. acknowledges the funding provided by CAS Project for Young Scientists in Basic Research (Grant No. YSBR-085) and National Time Service Center (Grant No. E239SC1101). Z.L. thanks the funding of Wenzhou Major Science & Technology Innovation Key Project (Grant No. ZG2023021). J.C. is supported by Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0303200). |
Corresponding Authors:
Chen Wang
E-mail: wangchen@ntsc.ac.cn
|
Cite this article:
Haoyang Wu(吴浩洋), Zhiqiang Wen(温智强), Chen Wang(王琛), Zhenfeng Liu(刘珍峰), Jingbiao Chen(陈景标), Shougang Zhang(张首刚), and Deshui Yu(于得水) Stabilizing 459 nm passive optical clock for pumping 1470 nm active optical clock 2025 Chin. Phys. B 34 114201
|
[1] Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, Mc- Nally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L and Ye J 2015 Nat. Commun. 6 6896 [2] Aeppli A, Kim K,WarfieldW, SafronovaMS and Ye J 2020 Phys. Rev. Lett. 133 023401 [3] Dimarcq N, Gertsvolf M, Mileti G, et al. 2024 Metrologia. 61 012001 [4] Meiser D, Ye J, Carlson D R and Holland M J 2009 Phys. Rev. Lett. 102 163601 [5] Ushijima I, Takamoto M and Katori H 2018 Phys. Rev. Lett. 121 263202 [6] Nemitz N, Jørgensen A A, Yanagimoto R, Bregolin F and Katori H 2019 Phys. Rev. A 99 033424 [7] Aeppli A, Chu A, Bothwell T, Kennedy C J, Kedar D, He P, Rey A M and Ye J 2022 Sci. Adv. 8 eadc9242 [8] Hutson R B, Goban A, Marti G E, Sonderhouse L, Sanner C and Ye J 2019 Phys. Rev. Lett. 123 123401 [9] Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B and Leibrandt D R 2019 Phys. Rev. Lett. 123 033201 [10] Takamoto M, Takano T and Katori H 2011 Nat. Photon. 5 288 [11] Bothwell T, Kennedy C J, Aeppli A, Kedar D, Robinson J M, Oelker E, Staron A and Ye J 2022 Nature 602 420 [12] Liu D, Cao J, Yuan J, Cui K, Yuan Y, Zhang P, Chao S, Shu H and Huang X 2023 Chin. Phys. B 32 010601 [13] Pedrozo-Peñafiel E, Colombo S, Shu C, Adiyatullin A F, Zeyang L, Mendez E, Braverman B, Kawasaki A, Akamatsu D, Xiao Y and Vuletić V 2020 Nature 588 414 [14] Robinson J M, Miklos M, Tso Y M, Kennedy C J, Bothwell T, Kedar D, Thompson J K and Ye J 2024 Nat. Phys. 20 208 [15] Martin K W, Phelps G, Lemke N D, Bigelow M S, Stuhl B, Wojcik M, Holt M, Coddington I, Bishop M W and Burke J H 2018 Phys. Rev. Appl. 9 014019 [16] Miao J, Shi T, Zhang J and Chen J 2022 Phys. Rev. Appl. 18 024034 [17] Cheng F, Ning J, Zhang F, Li H, Du Y, Zhang J, Deng K and Lu Z 2021 Chin. Phys. B 30 050603 [18] Miao J, Chen J, Yu D, Yang Q, Pan D and Chen J 2025 Photon. Res. 13 721 [19] Newman Z L, Maurice V, Drake T, Stone J R, et al. 2019 Optica 6 680 [20] Chen J 2009 Chin. Sci. Bull. 54 348 [21] Shi T, Pan D and Chen J 2019 Opt. Express 27 22040 [22] Zhang J, Shi T, Miao J, Yu D and Chen J 2024 npj Quantum Inf. 10 87 [23] Yu D, Zhang J, Zhang S and Chen J 2024 Adv. Quantum Technol. 7 2300308 [24] Yu D, Vollmer F, Del’Haye P and Zhang S 2023 Opt. Express 31 6228 [25] Yu D, Vollmer F and Zhang S 2023 Quantum Sci. Technol. 8 025005 [26] Olson J, Fox R W, Fortier T M, Sheerin T F, Brown R C, Leopardi H, Stoner R E, Oates C W and Ludlow A D 2019 Phys. Rev. Lett. 123 073202 [27] Bi Z, Ding L and Ma L 1993 Acta Phys. Sin. 42 582 (in Chinese) [28] Snyder J J, Raj R K, Bloch D and Ducloy M 1980 Opt. Lett. 5 163 [29] Bjorklund G C, Levenson M D, LenthWand Ortiz C 1983 Appl. Phys. B 32 145 [30] Toh G, Chalus N, Burgess A, Damitz A, Imany P, Leaird D E, Weiner A M, Tanner C E and Elliott D S 2019 Phys. Rev. A 100 052507 [31] Arimondo E, Inguscio M and Violino P 1977 Rev. Mod. Phys. 49 31 [32] Ito N 2000 Rev. Sci. Instrum. 71 2655 [33] Preuschoff T, Schlosser M and Birkl G 2018 Opt. Express 26 24010 [34] Breit G and Rabi I I 1931 Phys. Rev. 38 2082 [35] Lu B and Chang H 2023 Chin. Phys. B 32 013101 [36] Shang H, Zhang T, Miao J, Shi T, Pan D, Zhao X, Wei Q, Yang L and Chen J 2020 Opt. Express 28 6868 [37] Zeng M, Ma Z, Hu R, Zhang B, Hao Y, Zhang H, Huang Y, Guan H and Gao K 2023 Chin. Phys. B 32 110704 [38] Tricot F, Phung D H, Lours M, Guérandel S and de Clercq E 2018 Rev. Sci. Instrum. 89 113112 [39] Moses E I and Tang C L 1977 Opt. Lett. 1 115 [40] Lenth W, Ortiz C and Bjorklund G C 1982 Opt. Commun. 41 369 [41] Silver J A 1992 Appl. Opt. 31 707 [42] Whittaker E A, Shum C M, Grebel H and Lotem H 1988 J. Opt. Soc. Am. B 5 1253 [43] Numata K, Kemery A and Camp J 2004 Phys. Rev. Lett. 93 250602 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|