|
|
|
Observation of topology of non-Hermitian systems without chiral symmetry |
| Shuo Wang(王硕), Zhengjie Kang(康正杰), Hao Li(李浩), Jiaojiao Li(李姣姣) Yuanjie Zhang(张元杰), and Zhihuang Luo(罗智煌)† |
| Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing, School of Physics and Astronomy, Sun Yat-Sen University (Zhuhai Campus), Zhuhai 519082, China |
|
|
|
|
Abstract Topological invariants are crucial for characterizing topological systems. However, experimentally measuring them presents a significant challenge, especially in non-Hermitian systems where the biorthogonal eigenvectors are often necessary. We propose a general approach for measuring the topological invariants of one-dimensional non-Hermitian systems, which can be derived from the spin textures of right eigenstates. By utilizing a dilation method, we realize a non-Hermitian system without chiral symmetry on a two-qubit nuclear magnetic resonance system and measure the winding number associated with the eigenstates. In addition to examining the topology of the eigenstates, our experiment also reveals the topological structure of the energy band, which differs from that in chiral systems. Our work paves the way for further exploration of complex topological properties in non-Hermitian systems without chiral symmetry.
|
Received: 04 April 2025
Revised: 12 May 2025
Accepted manuscript online: 23 May 2025
|
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
| |
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
| |
05.30.Rt
|
(Quantum phase transitions)
|
| |
76.60.-k
|
(Nuclear magnetic resonance and relaxation)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11805008), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2024A1515011406), the Fundamental Research Funds for the Central Universities, Sun Yat-Sen University (Grant No. 23qnpy63), and the Fund from Guangdong Provincial Key Laboratory (Grant No. 2019B121203005). |
Corresponding Authors:
Zhihuang Luo
E-mail: luozhih5@mail.sysu.edu.cn
|
Cite this article:
Shuo Wang(王硕), Zhengjie Kang(康正杰), Hao Li(李浩), Jiaojiao Li(李姣姣) Yuanjie Zhang(张元杰), and Zhihuang Luo(罗智煌) Observation of topology of non-Hermitian systems without chiral symmetry 2025 Chin. Phys. B 34 110304
|
[1] Kitaev A Y 2003 Annals of Physics 303 2
[2] Nayak C, Simon S H, Stern A, Freedman M and Das S S 2008 Rev. Mod. Phys. 80 1083
[3] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[4] Wen X G 2017 Rev. Mod. Phys. 89 041004
[5] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1507
[6] Ghatak A and Das T 2019 J. Phys.: Condens. Matter 31 263001
[7] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005
[8] Zhou H Y and Lee J Y 2019 Phys. Rev. B 99 235112
[9] Kawabata K, Shiozaki K, Ueda M and Sato M 2019 Phys. Rev. X 9 041015
[10] Bergholtz E J, Budich J C and Kunst F K. 2021 Rev. Mod. Phys. 93 015005
[11] Ding K, Fang C and Ma G C 2022 Nature Reviews Physics 4 745
[12] Gong Z P, Ashida Y, Kawabata K, Takasan K, Higashikawa S and Ueda M 2018 Phys. Rev. X 8 031079
[13] Shen H T, Zhen, B and Fu L 2018 Phys. Rev. Lett. 120 146402
[14] Zhang K, Yang Z S and Fang C 2020 Phys. Rev. Lett. 125 126402
[15] Yao S Y and Wang Z 2018 Phys. Rev. Lett. 121 086803
[16] Yi Y F and Yang Z S 2020 Phys. Rev. Lett. 125 186802
[17] Okuma N, Kawabata K, Shiozaki K and Sato M 2020 Phys. Rev. Lett. 124 086801
[18] Zhang X J, Zhang T, Lu M H and Chen Y F 2022 Adv. Phys.: X 7 2109431
[19] Aquino R, Lopes N and Barci D G 2023 Phys. Rev. B 107 035424
[20] Rui W B, Zhao Y X and Wang Z D 2023 Phys. Rev. B 108 165105
[21] Zhang L F, Tang L Z, Huang Z H, Zhang G Q, Huang W and Zhang D W 2021 Phys. Rev. A 103 012419
[22] He P, Zhu Y Q, Wang J T and Zhu S L 2023 Phys. Rev. A 107 012219
[23] Jiang H, Yang C and Chen S 2018 Phys. Rev. A 98 052116
[24] Yin C H, Jiang H, Li L H, Lu R and Chen S 2018 Phys. Rev. A 97 052115
[25] Liang S D and Huang G Y 2013 Phys. Rev. A 87 012118
[26] Wojcik C C, Sun X Q, Bzdusek T and Fan S H 2020 Phys. Rev. B 101 205417
[27] Hu H P and Zhao E H 2021 Phys. Rev. Lett. 126 010401
[28] Lee T E 2016 Phys. Rev. Lett. 116 133903
[29] Leykam D, Bliokh K Y, Huang C L, Chong Y D and Nori F 2017 Phys. Rev. Lett. 118 040401
[30] Lieu S 2018 Phys. Rev. B 97 045106
[31] Yao S Y, Song F and Wang Z 2018 Phys. Rev. Lett. 121 136802
[32] Yokomizo K and Murakami S 2019 Phys. Rev. Lett. 123 066404
[33] Kunst F K, Edvardsson E, Budich J C and Bergholtz E J 2018 Phys. Rev. Lett. 121 026808
[34] Borgnia D S, Kruchkov A J and Slager R J 2020 Phys. Rev. Lett. 124 056802
[35] Zhu B, Ke Y G, Zhong H H and Lee C H 2020 Phys. Rev. Res. 2 023043
[36] Huang Z H, He P, Lang L J and Zhu S L 2023 Phys. Rev. A 107 052205
[37] Chen L M, Zhou Y, Chen S A and Ye P 2024 Chin. Phys. Lett. 41 127302
[38] Wang J J, Li F D and Yi X X 2023 Chin. Phys. B 32 020305
[39] Zhang W G, Ouyang X L, Huang X Z, Wang X, Zhang H L, Yu, Y F, Chang X Y, Liu Y Q, Deng D L and Duan L M 2021 Phys. Rev. Lett. 127 090501
[40] Wu Y, Wang Y H, Ye X Y, Liu W Q, Duan C K, Wang Y, Rong X and Du J F 2023 Phys. Rev. A 108 052409
[41] Wang K, Dutt A, Wojcik C C and Fan S H 2021 Nature 598 59
[42] Zhang Q C, Zhao L K, Liu X, Feng X L, Xiong L W, Wu W Q and Qiu C Y 2023 Phys. Rev. Res. 5 023043
[43] Zeuner J M, Rechtsman M C, Plotnik Y, Lumer Y, Nolte S, Rudner M S, Segev M and Szameit A 2015 Phys. Rev. Lett. 115 040402
[44] Liang C, Tang Y J, Xu A N and Liu Y C 2023 Phys. Rev. Lett. 130 263601
[45] Doppler J, Mailybaev A A, Bhm J, Kuhl U, Girschik A, Libisch F, Mil- burn T J, Rabl P, Moiseyev N and Rotter S 2016 Nature 537 76
[46] Xiao L, Deng T S, Wang K K, Zhu G Y, Wang Z, Yi W and Xue P 2020 Nat. Phys. 16 761
[47] Liu W Q, Wu Y, Duan C K, Rong X and Du J F 2021 Phys. Rev. Lett. 126 170506
[48] Wang K K, Li T Y, Xiao L, Han Y W, Yi W and Xue P 2021 Phys. Rev. Lett. 127 270602
[49] Cao M M, Li K, Zhao W D, Guo W X, Qi B X, Chang X Y, Zhou Z C, Xu Y and Duan L M 2023 Phys. Rev. Lett. 130 163001
[50] Su R, Estrecho E, Bieganska D, Huang Y Q, Wurdack M, Pieczarka M, Truscott A G, Liew T C H, Ostrovskaya E A and Xiong Q H 2021 Sci. Adv. 7 eabj8905
[51] Helbig T, Hofmann T, Imhof S, Abdelghany M, Kiessling T, Molenkamp L W, Lee C H, Szameit A, Greiter M and Thomale R 2020 Nat. Phys. 16 747
[52] Hu B L, Zhang Z W, Yue Z C, Liao D W, Liu Y M, Zhang H X, Cheng Y, Liu X J and Christensen J 2023 Phys. Rev. Lett. 131 066601
[53] Lin Z D, Zhang L, Long X Y, Fan Y A, Li Y, Tang K, Li J, Nie X F, Xin T, Liu X J and Lu D W 2022 npj Quantum Information 8 77
[54] Xu H, Mason D, Jiang L Y and Harris J G E 2016 Nature 537 80
[55] Zhang H L, Jiang S, Wang X, Zhang W G, Huang X Z, Ouyang X L, Yu Y F, Liu Y Q, Deng D L and Duan L M 2022 Nat. Commun. 13 4993
[56] Yu Y F, Yu L W, Zhang W G, Zhang H L, Ouyang X L, Liu Y Q, Deng D L and Duan L M 2022 npj Quantum Information 8 116
[57] Ashida Y, Gong Z P and Ueda M 2020 Adv. Phys. 69 249
[58] Brody D C 2013 J. Phys. A: Math. Theor. 47 035305
[59] Martinez A V M, Barrios V J E and Foa T L E F 2018 Phys. Rev. B 97 121401
[60] Hatsugai Y 1993 Phys. Rev. Lett. 71 3697
[61] Thouless D J, Kohmoto M, Nightingale M P and den N M 1982 Phys. Rev. Lett. 49 405
[62] Chang C Z, Zhang J S, Feng X, et al. 2013 Science 340 167
[63] Asboth J K, Oroszl any L and P alyi A 2016 A short course on topological insulators (Switzerland: Springer) pp. 1–44
[64] Halder D, Ganguly S and Basu S 2022 J. Phys.: Condens. Matter 35 105901
[65] Wu Y, Liu W Q, Geng J P, Song X R, Ye X Y, Duan C K, Rong X and Du J F 2019 Science 364 878
[66] Khaneja N, Reiss T, Kehlet C, Schulte-Herbruggen T and Glaser S J 2005 Journal of Magnetic Resonance 172 296
[67] Luo Z H, Li J, Li Z K, Hung L Y, Wan Y D, Peng X H and Du J F 2018 Nat. Phys. 14 160
[68] Luo Z H, Zhang W Z, Nie X F and Lu D Y 2022 arXiv: 2208.05357 [quant-ph] |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|