Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 110304    DOI: 10.1088/1674-1056/addcc1
GENERAL Prev   Next  

Observation of topology of non-Hermitian systems without chiral symmetry

Shuo Wang(王硕), Zhengjie Kang(康正杰), Hao Li(李浩), Jiaojiao Li(李姣姣) Yuanjie Zhang(张元杰), and Zhihuang Luo(罗智煌)
Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing, School of Physics and Astronomy, Sun Yat-Sen University (Zhuhai Campus), Zhuhai 519082, China
Abstract  Topological invariants are crucial for characterizing topological systems. However, experimentally measuring them presents a significant challenge, especially in non-Hermitian systems where the biorthogonal eigenvectors are often necessary. We propose a general approach for measuring the topological invariants of one-dimensional non-Hermitian systems, which can be derived from the spin textures of right eigenstates. By utilizing a dilation method, we realize a non-Hermitian system without chiral symmetry on a two-qubit nuclear magnetic resonance system and measure the winding number associated with the eigenstates. In addition to examining the topology of the eigenstates, our experiment also reveals the topological structure of the energy band, which differs from that in chiral systems. Our work paves the way for further exploration of complex topological properties in non-Hermitian systems without chiral symmetry.
Keywords:  nuclear magnetic resonance      quantum simulation      non-Hermitian system      topological phases  
Received:  04 April 2025      Revised:  12 May 2025      Accepted manuscript online:  23 May 2025
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  05.30.Rt (Quantum phase transitions)  
  76.60.-k (Nuclear magnetic resonance and relaxation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11805008), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2024A1515011406), the Fundamental Research Funds for the Central Universities, Sun Yat-Sen University (Grant No. 23qnpy63), and the Fund from Guangdong Provincial Key Laboratory (Grant No. 2019B121203005).
Corresponding Authors:  Zhihuang Luo     E-mail:  luozhih5@mail.sysu.edu.cn

Cite this article: 

Shuo Wang(王硕), Zhengjie Kang(康正杰), Hao Li(李浩), Jiaojiao Li(李姣姣) Yuanjie Zhang(张元杰), and Zhihuang Luo(罗智煌) Observation of topology of non-Hermitian systems without chiral symmetry 2025 Chin. Phys. B 34 110304

[1] Kitaev A Y 2003 Annals of Physics 303 2
[2] Nayak C, Simon S H, Stern A, Freedman M and Das S S 2008 Rev. Mod. Phys. 80 1083
[3] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[4] Wen X G 2017 Rev. Mod. Phys. 89 041004
[5] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1507
[6] Ghatak A and Das T 2019 J. Phys.: Condens. Matter 31 263001
[7] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005
[8] Zhou H Y and Lee J Y 2019 Phys. Rev. B 99 235112
[9] Kawabata K, Shiozaki K, Ueda M and Sato M 2019 Phys. Rev. X 9 041015
[10] Bergholtz E J, Budich J C and Kunst F K. 2021 Rev. Mod. Phys. 93 015005
[11] Ding K, Fang C and Ma G C 2022 Nature Reviews Physics 4 745
[12] Gong Z P, Ashida Y, Kawabata K, Takasan K, Higashikawa S and Ueda M 2018 Phys. Rev. X 8 031079
[13] Shen H T, Zhen, B and Fu L 2018 Phys. Rev. Lett. 120 146402
[14] Zhang K, Yang Z S and Fang C 2020 Phys. Rev. Lett. 125 126402
[15] Yao S Y and Wang Z 2018 Phys. Rev. Lett. 121 086803
[16] Yi Y F and Yang Z S 2020 Phys. Rev. Lett. 125 186802
[17] Okuma N, Kawabata K, Shiozaki K and Sato M 2020 Phys. Rev. Lett. 124 086801
[18] Zhang X J, Zhang T, Lu M H and Chen Y F 2022 Adv. Phys.: X 7 2109431
[19] Aquino R, Lopes N and Barci D G 2023 Phys. Rev. B 107 035424
[20] Rui W B, Zhao Y X and Wang Z D 2023 Phys. Rev. B 108 165105
[21] Zhang L F, Tang L Z, Huang Z H, Zhang G Q, Huang W and Zhang D W 2021 Phys. Rev. A 103 012419
[22] He P, Zhu Y Q, Wang J T and Zhu S L 2023 Phys. Rev. A 107 012219
[23] Jiang H, Yang C and Chen S 2018 Phys. Rev. A 98 052116
[24] Yin C H, Jiang H, Li L H, Lu R and Chen S 2018 Phys. Rev. A 97 052115
[25] Liang S D and Huang G Y 2013 Phys. Rev. A 87 012118
[26] Wojcik C C, Sun X Q, Bzdusek T and Fan S H 2020 Phys. Rev. B 101 205417
[27] Hu H P and Zhao E H 2021 Phys. Rev. Lett. 126 010401
[28] Lee T E 2016 Phys. Rev. Lett. 116 133903
[29] Leykam D, Bliokh K Y, Huang C L, Chong Y D and Nori F 2017 Phys. Rev. Lett. 118 040401
[30] Lieu S 2018 Phys. Rev. B 97 045106
[31] Yao S Y, Song F and Wang Z 2018 Phys. Rev. Lett. 121 136802
[32] Yokomizo K and Murakami S 2019 Phys. Rev. Lett. 123 066404
[33] Kunst F K, Edvardsson E, Budich J C and Bergholtz E J 2018 Phys. Rev. Lett. 121 026808
[34] Borgnia D S, Kruchkov A J and Slager R J 2020 Phys. Rev. Lett. 124 056802
[35] Zhu B, Ke Y G, Zhong H H and Lee C H 2020 Phys. Rev. Res. 2 023043
[36] Huang Z H, He P, Lang L J and Zhu S L 2023 Phys. Rev. A 107 052205
[37] Chen L M, Zhou Y, Chen S A and Ye P 2024 Chin. Phys. Lett. 41 127302
[38] Wang J J, Li F D and Yi X X 2023 Chin. Phys. B 32 020305
[39] Zhang W G, Ouyang X L, Huang X Z, Wang X, Zhang H L, Yu, Y F, Chang X Y, Liu Y Q, Deng D L and Duan L M 2021 Phys. Rev. Lett. 127 090501
[40] Wu Y, Wang Y H, Ye X Y, Liu W Q, Duan C K, Wang Y, Rong X and Du J F 2023 Phys. Rev. A 108 052409
[41] Wang K, Dutt A, Wojcik C C and Fan S H 2021 Nature 598 59
[42] Zhang Q C, Zhao L K, Liu X, Feng X L, Xiong L W, Wu W Q and Qiu C Y 2023 Phys. Rev. Res. 5 023043
[43] Zeuner J M, Rechtsman M C, Plotnik Y, Lumer Y, Nolte S, Rudner M S, Segev M and Szameit A 2015 Phys. Rev. Lett. 115 040402
[44] Liang C, Tang Y J, Xu A N and Liu Y C 2023 Phys. Rev. Lett. 130 263601
[45] Doppler J, Mailybaev A A, Bhm J, Kuhl U, Girschik A, Libisch F, Mil- burn T J, Rabl P, Moiseyev N and Rotter S 2016 Nature 537 76
[46] Xiao L, Deng T S, Wang K K, Zhu G Y, Wang Z, Yi W and Xue P 2020 Nat. Phys. 16 761
[47] Liu W Q, Wu Y, Duan C K, Rong X and Du J F 2021 Phys. Rev. Lett. 126 170506
[48] Wang K K, Li T Y, Xiao L, Han Y W, Yi W and Xue P 2021 Phys. Rev. Lett. 127 270602
[49] Cao M M, Li K, Zhao W D, Guo W X, Qi B X, Chang X Y, Zhou Z C, Xu Y and Duan L M 2023 Phys. Rev. Lett. 130 163001
[50] Su R, Estrecho E, Bieganska D, Huang Y Q, Wurdack M, Pieczarka M, Truscott A G, Liew T C H, Ostrovskaya E A and Xiong Q H 2021 Sci. Adv. 7 eabj8905
[51] Helbig T, Hofmann T, Imhof S, Abdelghany M, Kiessling T, Molenkamp L W, Lee C H, Szameit A, Greiter M and Thomale R 2020 Nat. Phys. 16 747
[52] Hu B L, Zhang Z W, Yue Z C, Liao D W, Liu Y M, Zhang H X, Cheng Y, Liu X J and Christensen J 2023 Phys. Rev. Lett. 131 066601
[53] Lin Z D, Zhang L, Long X Y, Fan Y A, Li Y, Tang K, Li J, Nie X F, Xin T, Liu X J and Lu D W 2022 npj Quantum Information 8 77
[54] Xu H, Mason D, Jiang L Y and Harris J G E 2016 Nature 537 80
[55] Zhang H L, Jiang S, Wang X, Zhang W G, Huang X Z, Ouyang X L, Yu Y F, Liu Y Q, Deng D L and Duan L M 2022 Nat. Commun. 13 4993
[56] Yu Y F, Yu L W, Zhang W G, Zhang H L, Ouyang X L, Liu Y Q, Deng D L and Duan L M 2022 npj Quantum Information 8 116
[57] Ashida Y, Gong Z P and Ueda M 2020 Adv. Phys. 69 249
[58] Brody D C 2013 J. Phys. A: Math. Theor. 47 035305
[59] Martinez A V M, Barrios V J E and Foa T L E F 2018 Phys. Rev. B 97 121401
[60] Hatsugai Y 1993 Phys. Rev. Lett. 71 3697
[61] Thouless D J, Kohmoto M, Nightingale M P and den N M 1982 Phys. Rev. Lett. 49 405
[62] Chang C Z, Zhang J S, Feng X, et al. 2013 Science 340 167
[63] Asboth J K, Oroszl any L and P alyi A 2016 A short course on topological insulators (Switzerland: Springer) pp. 1–44
[64] Halder D, Ganguly S and Basu S 2022 J. Phys.: Condens. Matter 35 105901
[65] Wu Y, Liu W Q, Geng J P, Song X R, Ye X Y, Duan C K, Rong X and Du J F 2019 Science 364 878
[66] Khaneja N, Reiss T, Kehlet C, Schulte-Herbruggen T and Glaser S J 2005 Journal of Magnetic Resonance 172 296
[67] Luo Z H, Li J, Li Z K, Hung L Y, Wan Y D, Peng X H and Du J F 2018 Nat. Phys. 14 160
[68] Luo Z H, Zhang W Z, Nie X F and Lu D Y 2022 arXiv: 2208.05357 [quant-ph]
[1] Non-Hermitian mosaic Aubry-Andre-Harper model
Yingshixiang Wang(王应时翔), Dongze Song(宋东泽), and Xu Xia(夏旭). Chin. Phys. B, 2025, 34(9): 090201.
[2] Response analysis of NMRG system considering Rb-Xe coupling
Yi Zhang(张燚), Qiyuan Jiang(江奇渊), Bingfeng Sun(孙兵锋), Jiahu Wei(魏加湖), Lin Yang(杨麟), Yongyuan Li(李永远), Zhiguo Wang(汪之国), Kaiyong Yang(杨开勇), and Hui Luo(罗晖). Chin. Phys. B, 2024, 33(9): 094203.
[3] Approximate constructions of counterdiabatic driving with NMR quantum systems
Hui Zhou(周辉), Xiaoli Dai(代晓莉), Jianpei Geng(耿建培), Yunlan Ji(季云兰), and Xinhua Peng(彭新华). Chin. Phys. B, 2024, 33(9): 090301.
[4] RKKY interaction in helical higher-order topological insulators
Sha Jin(金莎), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2024, 33(7): 077503.
[5] Low-energy spin dynamics in a Kitaev material Na3Ni2BiO6 investigated by nuclear magnetic resonance
Xinyu Shi(史昕雨), Yi Cui(崔祎), Yanyan Shangguan(上官艳艳), Xiaoyu Xu(徐霄宇), Zhanlong Wu(吴占龙), Ze Hu(胡泽), Shuo Li(李硕), Kefan Du(杜柯帆), Ying Chen(陈颖), Long Ma(马龙), Zhengxin Liu(刘正鑫), Jinsheng Wen(温锦生), Jinshan Zhang(张金珊), and Weiqiang Yu(于伟强). Chin. Phys. B, 2024, 33(6): 067601.
[6] Anomalous time-reversal symmetric non-Hermitian systems
Yifei Yi(易益妃). Chin. Phys. B, 2024, 33(6): 060302.
[7] Exceptional points and quantum dynamics in a non-Hermitian two-qubit system
Yi-Xi Zhang(张益玺), Zhen-Tao Zhang(张振涛), Zhen-Shan Yang(杨震山), Xiao-Zhi Wei(魏晓志), and Bao-Long Liang(梁宝龙). Chin. Phys. B, 2024, 33(6): 060308.
[8] Floquet engineering of a dynamical Z2 lattice gauge field with ultracold atoms
Xiangxiang Sun(孙祥祥), Hao-Yue Qi(齐浩月), Pengfei Zhang(张鹏飞), and Wei Zheng(郑炜). Chin. Phys. B, 2024, 33(11): 110304.
[9] Variational quantum simulation of the quantum critical regime
Zhi-Quan Shi(石志全), Xu-Dan Xie(谢旭丹), and Dan-Bo Zhang(张旦波). Chin. Phys. B, 2023, 32(8): 080305.
[10] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[11] Measuring Loschmidt echo via Floquet engineering in superconducting circuits
Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平). Chin. Phys. B, 2022, 31(3): 030307.
[12] Quantum simulation of lattice gauge theories on superconducting circuits: Quantum phase transition and quench dynamics
Zi-Yong Ge(葛自勇), Rui-Zhen Huang(黄瑞珍), Zi-Yang Meng(孟子杨), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(2): 020304.
[13] Quantum simulation of τ-anti-pseudo-Hermitian two-level systems
Chao Zheng(郑超). Chin. Phys. B, 2022, 31(10): 100301.
[14] Quantum simulation and quantum computation of noisy-intermediate scale
Kai Xu(许凯), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(10): 100304.
[15] Tri-hexagonal charge order in kagome metal CsV3Sb5 revealed by 121Sb nuclear quadrupole resonance
Chao Mu(牟超), Qiangwei Yin(殷蔷薇), Zhijun Tu(涂志俊), Chunsheng Gong(龚春生), Ping Zheng(郑萍), Hechang Lei(雷和畅), Zheng Li(李政), and Jianlin Luo(雒建林). Chin. Phys. B, 2022, 31(1): 017105.
No Suggested Reading articles found!