CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Low-energy spin dynamics in a Kitaev material Na3Ni2BiO6 investigated by nuclear magnetic resonance |
Xinyu Shi(史昕雨)1,†, Yi Cui(崔祎)2,3,†, Yanyan Shangguan(上官艳艳)4,†, Xiaoyu Xu(徐霄宇)2, Zhanlong Wu(吴占龙)2, Ze Hu(胡泽)2, Shuo Li(李硕)2, Kefan Du(杜柯帆)2, Ying Chen(陈颖)2, Long Ma(马龙)5, Zhengxin Liu(刘正鑫)2,3, Jinsheng Wen(温锦生)4,6,‡, Jinshan Zhang(张金珊)1,§, and Weiqiang Yu(于伟强)2,3,¶ |
1 Mathematics and Physics Department, North China Electric Power University, Beijing 102206, China; 2 Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China; 3 Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China; 4 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China; 5 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China; 6 Innovative Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China |
|
|
Abstract We perform $^{23}$Na nuclear magnetic resonance (NMR) and magnetization measurements on an $S = 1$, quasi-2D honeycomb lattice antiferromagnet Na$_3$Ni$_2$BiO$_6$. A large positive Curie-Weiss constant of 22.9K is observed. The NMR spectra at low fields are consistent with a zigzag magnetic order, indicating a large easy-axis anisotropy. With the field applied along the $c^{*}$ axis, the NMR spectra confirm the existence of a $1/3$-magnetization plateau phase between 5.1T and 7.1T. The transition from the zigzag order to the $1/3$-magnetization plateau phase is also found to be a first-order type. A monotonic decrease of the spin gap is revealed in the $1/3$-magnetization plateau phase, which reaches zero at a quantum critical field $H_{\rm C}\approx8.35$T before entering the fully polarized phase. These data suggest the existence of exchange frustration in the system along with strong ferromagnetic interactions, hosting the possibility for Kitaev physics. Besides, well below the ordered phase, the 1/$T_1$ at high fields shows either a level off or an enhancement upon cooling below 3K, which suggests the existence of low-energy fluctuations.
|
Received: 27 January 2024
Revised: 06 April 2024
Accepted manuscript online: 12 April 2024
|
PACS:
|
76.60.-k
|
(Nuclear magnetic resonance and relaxation)
|
|
75.30.Cr
|
(Saturation moments and magnetic susceptibilities)
|
|
75.10.Jm
|
(Quantized spin models, including quantum spin frustration)
|
|
64.70.Tg
|
(Quantum phase transitions)
|
|
Fund: vProject supported by the National Key R&D Program of China (Grant Nos. 2023YFA1406500, 2022YFA1402700, and 2021YFA1400400) and the National Natural Science Foundation of China (Grant Nos. 12134020, 12374156, 12104503, 12061131004, 12225407, and 12074174). |
Corresponding Authors:
Jinsheng Wen, Jinshan Zhang, Weiqiang Yu
E-mail: jwen@nju.edu.cn;zhangjs@ncepu.edu.cn;wqyu_phy@ruc.edu.cn
|
Cite this article:
Xinyu Shi(史昕雨), Yi Cui(崔祎), Yanyan Shangguan(上官艳艳), Xiaoyu Xu(徐霄宇), Zhanlong Wu(吴占龙), Ze Hu(胡泽), Shuo Li(李硕), Kefan Du(杜柯帆), Ying Chen(陈颖), Long Ma(马龙), Zhengxin Liu(刘正鑫), Jinsheng Wen(温锦生), Jinshan Zhang(张金珊), and Weiqiang Yu(于伟强) Low-energy spin dynamics in a Kitaev material Na3Ni2BiO6 investigated by nuclear magnetic resonance 2024 Chin. Phys. B 33 067601
|
[1] Kitaev A 2006 Ann. Phys. 321 2 [2] Jackeli G and Khaliullin G 2009 Phys. Rev. Lett. 102 017205 [3] Rau J G, Lee E K H and Kee H Y 2014 Phys. Rev. Lett. 112 077204 [4] Chanlert P, Kurita N, Tanaka H, Goto D, Matsuo A and Kindo K 2016 Phys. Rev. B 93 094420 [5] Liu X, Berlijn T, Yin W G, Ku W, Tsvelik A, Kim Y J, Gretarsson H, Singh Y, Gegenwart P and Hill J P 2011 Phys. Rev. B 83 220403 [6] Ye F, Chi S, Cao H, Chakoumakos B C, Fernandez-Baca J A, Custelcean R, Qi T F, Korneta O B and Cao G 2012 Phys. Rev. B 85 180403 [7] Choi S K, Coldea R, Kolmogorov A N, et al. 2012 Phys. Rev. Lett. 108 127204 [8] Johnson R D, Williams S C, Haghighirad A A, Singleton J, Zapf V, Manuel P, Mazin I I, Li Y, Jeschke H O, Valentí R and Coldea R 2015 Phys. Rev. B 92 235119 [9] Sears J A, Songvilay M, Plumb K W, Clancy J P, Qiu Y, Zhao Y, Parshall D and Kim Y J 2015 Phys. Rev. B 91 144420 [10] Lefrançois E, Songvilay M, Robert J, Nataf G, Jordan E, Chaix L, Colin C V, Lejay P, Hadj-Azzem A, Ballou R and Simonet V 2016 Phys. Rev. B 94 214416 [11] Bera A K, Yusuf S M, Kumar A and Ritter C 2017 Phys. Rev. B 95 094424 [12] Wong C, Avdeev M and Ling C D 2016 J. Solid State Chem. 243 18 [13] Yan J Q, Okamoto S, Wu Y, Zheng Q, Zhou H D, Cao H B and McGuire M A 2019 Phys. Rev. Mater. 3 074405 [14] Kim C, Jeong J, Lin G, Park P, Masuda T, Asai S, Itoh S, Kim H S, Zhou H, Ma J and Park J G 2021 J. Phys. Condens. Matter 34 045802 [15] Zheng J, Ran K, Li T, Wang J, Wang P, Liu B, Liu Z X, Normand B, Wen J and Yu W 2017 Phys. Rev. Lett. 119 227208 [16] Li L, Stone M B, Granroth G E, et al. 2016 Nat. Mater. 15 733 [17] Leahy I A, Pocs C A, Siegfried P E, Graf D, Do S H, Choi K Y, Normand B and Lee M 2017 Phys. Rev. Lett. 118 187203 [18] Sears J A, Zhao Y, Xu Z, Lynn J W and Kim Y J 2017 Phys. Rev. B 95 180411 [19] Wang Z, Reschke S, Hüvonen D, Do S H, Choi K Y, Gensch M, Nagel U, Rõõm T and Loidl A 2017 Phys. Rev. Lett. 119 227202 [20] Balz C, Lampen-Kelley P, Banerjee A, et al. 2019 Phys. Rev. B 100 060405 [21] Czajka P, Gao T, Hirschberger M, Lampen-Kelley P, Banerjee A, Yan J, Mandrus D G, Nagler S E and Ong N P 2021 Nat. Phys. 17 915 [22] Li H, Zhang H K, Wang J, Wu H Q, Gao Y, Qu D W, Liu Z X, Gong S S and Li W 2021 Nat. Commun. 12 4007 [23] Yao W and Li Y 2020 Phys. Rev. B 101 085120 [24] Lin G, Jeong J, Kim C, et al. 2021 Nat. Commun. 12 5559 [25] Li X, Gu Y, Chen Y, Garlea V O, Iida K, Kamazawa K, Li Y, Deng G, Xiao Q, Zheng X, Ye Z, Peng Y, Zaliznyak I A, Tranquada J M and Li Y 2022 Phys. Rev. X 12 041024 [26] Hu Z, Chen Y, Cui Y, Li S, Li C, Xu X, Chen Y, Li X, Gu Y, Yu R, Zhou R, Li Y and Yu W 2024 Phys. Rev. B 109 054411 [27] Shangguan Y, Bao S, Dong Z Y, et al. 2023 Nat. Phys. 19 1883 [28] Schotte U, Stusser N, Schotte K D, Weinfurter H, Mayer H M and Winkelmann M 1994 J. Phys. Condens. Matter 6 10105 [29] Ono T, Tanaka H, Aruga Katori H, Ishikawa F, Mitamura H and Goto T 2003 Phys. Rev. B 67 104431 [30] Tsujii H, Rotundu C R, Ono T, Tanaka H, Andraka B, Ingersent K and Takano Y 2007 Phys. Rev. B 76 060406 [31] Fortune N A, Hannahs S T, Yoshida Y, Sherline T E, Ono T, Tanaka H and Takano Y 2009 Phys. Rev. Lett. 102 257201 [32] Shirata Y, Tanaka H, Matsuo A and Kindo K 2012 Phys. Rev. Lett. 108 057205 [33] Zhou H D, Xu C, Hallas A M, Silverstein H J, Wiebe C R, Umegaki I, Yan J Q, Murphy T P, Park J H, Qiu Y, Copley J R D, Gardner J S and Takano Y 2012 Phys. Rev. Lett. 109 267206 [34] Susuki T, Kurita N, Tanaka T, Nojiri H, Matsuo A, Kindo K and Tanaka H 2013 Phys. Rev. Lett. 110 267201 [35] Kamiya Y, Ge L, Hong T, et al. 2018 Nat. Commun. 9 2666 [36] Zhitomirsky M E 2002 Phys. Rev. Lett. 88 057204 [37] Damle K and Senthil T 2006 Phys. Rev. Lett. 97 067202 [38] Nishimoto S, Shibata N and Hotta C 2013 Nat. Commun. 4 2287 [39] Adhikary M, Ralko A and Kumar B 2021 Phys. Rev. B 104 094416 [40] Gen M and Suwa H 2022 Phys. Rev. B 105 174424 [41] Lozovik Y and Notych O 1993 Solid State Commun. 85 873 [42] Kageyama H, Yoshimura K, Stern R, et al. 1999 Phys. Rev. Lett. 82 3168 [43] Kodama K, Takigawa M, Horvatić M, Berthier C, Kageyama H, Ueda Y, Miyahara S, Becca F and Mila F 2002 Science 298 395 [44] Chubukov A V and Golosov D I 1991 J. Phys. Condens. Matter 3 69 [45] Honecker A 1999 J. Phys. Condens. Matter 11 4697 [46] Starykh O A 2015 Rep. Prog. Phys. 78 052502 [47] Zhitomirsky M E, Honecker A and Petrenko O 2000 Phys. Rev. Lett. 85 3269 [48] Kawamura H and Miyashita S 1985 J. Phys. Soc. Jpn. 54 4530 [49] Henley C L 1989 Phys. Rev. Lett. 62 2056 [50] Alicea J, Chubukov A V and Starykh O A 2009 Phys. Rev. Lett. 102 137201 [51] Coletta T, Zhitomirsky M E and Mila F 2013 Phys. Rev. B 87 060407 [52] Yamamoto D, Marmorini G and Danshita I 2014 Phys. Rev. Lett. 112 127203 [53] Inami T, Ajiro Y and Goto T 1996 J. Phys. Soc. Jpn. 65 2374 [54] Shirata Y, Tanaka H, Ono T, Matsuo A, Kindo K and Nakano H 2011 J. Phys. Soc. Jpn. 80 093702 [55] Hwang J, Choi E S, Ye F, Dela Cruz C R, Xin Y, Zhou H D and Schlottmann P 2012 Phys. Rev. Lett. 109 257205 [56] Seabra L, Momoi T, Sindzingre P and Shannon N 2011 Phys. Rev. B 84 214418 [57] Okutani A, Kida T, Narumi Y, Shimokawa T, Honda Z, Kindo K, Nakano T, Nozue Y and Hagiwara M 2019 J. Phys. Soc. Jpn. 88 013703 [58] Seibel E M, Roudebush J H, Wu H, Huang Q, Ali M N, Ji H and Cava R J 2013 Inorg. Chem. 52 13605 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|