Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 067601    DOI: 10.1088/1674-1056/ad3dce
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Low-energy spin dynamics in a Kitaev material Na3Ni2BiO6 investigated by nuclear magnetic resonance

Xinyu Shi(史昕雨)1,†, Yi Cui(崔祎)2,3,†, Yanyan Shangguan(上官艳艳)4,†, Xiaoyu Xu(徐霄宇)2, Zhanlong Wu(吴占龙)2, Ze Hu(胡泽)2, Shuo Li(李硕)2, Kefan Du(杜柯帆)2, Ying Chen(陈颖)2, Long Ma(马龙)5, Zhengxin Liu(刘正鑫)2,3, Jinsheng Wen(温锦生)4,6,‡, Jinshan Zhang(张金珊)1,§, and Weiqiang Yu(于伟强)2,3,¶
1 Mathematics and Physics Department, North China Electric Power University, Beijing 102206, China;
2 Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China;
3 Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China;
4 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China;
5 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China;
6 Innovative Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  We perform $^{23}$Na nuclear magnetic resonance (NMR) and magnetization measurements on an $S = 1$, quasi-2D honeycomb lattice antiferromagnet Na$_3$Ni$_2$BiO$_6$. A large positive Curie-Weiss constant of 22.9K is observed. The NMR spectra at low fields are consistent with a zigzag magnetic order, indicating a large easy-axis anisotropy. With the field applied along the $c^{*}$ axis, the NMR spectra confirm the existence of a $1/3$-magnetization plateau phase between 5.1T and 7.1T. The transition from the zigzag order to the $1/3$-magnetization plateau phase is also found to be a first-order type. A monotonic decrease of the spin gap is revealed in the $1/3$-magnetization plateau phase, which reaches zero at a quantum critical field $H_{\rm C}\approx8.35$T before entering the fully polarized phase. These data suggest the existence of exchange frustration in the system along with strong ferromagnetic interactions, hosting the possibility for Kitaev physics. Besides, well below the ordered phase, the 1/$T_1$ at high fields shows either a level off or an enhancement upon cooling below 3K, which suggests the existence of low-energy fluctuations.
Keywords:  one-third magnetization plateau phase      nuclear magnetic resonance      honeycomb-lattice antiferromagnet      Kitaev interaction  
Received:  27 January 2024      Revised:  06 April 2024      Accepted manuscript online:  12 April 2024
PACS:  76.60.-k (Nuclear magnetic resonance and relaxation)  
  75.30.Cr (Saturation moments and magnetic susceptibilities)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  64.70.Tg (Quantum phase transitions)  
Fund: vProject supported by the National Key R&D Program of China (Grant Nos. 2023YFA1406500, 2022YFA1402700, and 2021YFA1400400) and the National Natural Science Foundation of China (Grant Nos. 12134020, 12374156, 12104503, 12061131004, 12225407, and 12074174).
Corresponding Authors:  Jinsheng Wen, Jinshan Zhang, Weiqiang Yu     E-mail:  jwen@nju.edu.cn;zhangjs@ncepu.edu.cn;wqyu_phy@ruc.edu.cn

Cite this article: 

Xinyu Shi(史昕雨), Yi Cui(崔祎), Yanyan Shangguan(上官艳艳), Xiaoyu Xu(徐霄宇), Zhanlong Wu(吴占龙), Ze Hu(胡泽), Shuo Li(李硕), Kefan Du(杜柯帆), Ying Chen(陈颖), Long Ma(马龙), Zhengxin Liu(刘正鑫), Jinsheng Wen(温锦生), Jinshan Zhang(张金珊), and Weiqiang Yu(于伟强) Low-energy spin dynamics in a Kitaev material Na3Ni2BiO6 investigated by nuclear magnetic resonance 2024 Chin. Phys. B 33 067601

[1] Kitaev A 2006 Ann. Phys. 321 2
[2] Jackeli G and Khaliullin G 2009 Phys. Rev. Lett. 102 017205
[3] Rau J G, Lee E K H and Kee H Y 2014 Phys. Rev. Lett. 112 077204
[4] Chanlert P, Kurita N, Tanaka H, Goto D, Matsuo A and Kindo K 2016 Phys. Rev. B 93 094420
[5] Liu X, Berlijn T, Yin W G, Ku W, Tsvelik A, Kim Y J, Gretarsson H, Singh Y, Gegenwart P and Hill J P 2011 Phys. Rev. B 83 220403
[6] Ye F, Chi S, Cao H, Chakoumakos B C, Fernandez-Baca J A, Custelcean R, Qi T F, Korneta O B and Cao G 2012 Phys. Rev. B 85 180403
[7] Choi S K, Coldea R, Kolmogorov A N, et al. 2012 Phys. Rev. Lett. 108 127204
[8] Johnson R D, Williams S C, Haghighirad A A, Singleton J, Zapf V, Manuel P, Mazin I I, Li Y, Jeschke H O, Valentí R and Coldea R 2015 Phys. Rev. B 92 235119
[9] Sears J A, Songvilay M, Plumb K W, Clancy J P, Qiu Y, Zhao Y, Parshall D and Kim Y J 2015 Phys. Rev. B 91 144420
[10] Lefrançois E, Songvilay M, Robert J, Nataf G, Jordan E, Chaix L, Colin C V, Lejay P, Hadj-Azzem A, Ballou R and Simonet V 2016 Phys. Rev. B 94 214416
[11] Bera A K, Yusuf S M, Kumar A and Ritter C 2017 Phys. Rev. B 95 094424
[12] Wong C, Avdeev M and Ling C D 2016 J. Solid State Chem. 243 18
[13] Yan J Q, Okamoto S, Wu Y, Zheng Q, Zhou H D, Cao H B and McGuire M A 2019 Phys. Rev. Mater. 3 074405
[14] Kim C, Jeong J, Lin G, Park P, Masuda T, Asai S, Itoh S, Kim H S, Zhou H, Ma J and Park J G 2021 J. Phys. Condens. Matter 34 045802
[15] Zheng J, Ran K, Li T, Wang J, Wang P, Liu B, Liu Z X, Normand B, Wen J and Yu W 2017 Phys. Rev. Lett. 119 227208
[16] Li L, Stone M B, Granroth G E, et al. 2016 Nat. Mater. 15 733
[17] Leahy I A, Pocs C A, Siegfried P E, Graf D, Do S H, Choi K Y, Normand B and Lee M 2017 Phys. Rev. Lett. 118 187203
[18] Sears J A, Zhao Y, Xu Z, Lynn J W and Kim Y J 2017 Phys. Rev. B 95 180411
[19] Wang Z, Reschke S, Hüvonen D, Do S H, Choi K Y, Gensch M, Nagel U, Rõõm T and Loidl A 2017 Phys. Rev. Lett. 119 227202
[20] Balz C, Lampen-Kelley P, Banerjee A, et al. 2019 Phys. Rev. B 100 060405
[21] Czajka P, Gao T, Hirschberger M, Lampen-Kelley P, Banerjee A, Yan J, Mandrus D G, Nagler S E and Ong N P 2021 Nat. Phys. 17 915
[22] Li H, Zhang H K, Wang J, Wu H Q, Gao Y, Qu D W, Liu Z X, Gong S S and Li W 2021 Nat. Commun. 12 4007
[23] Yao W and Li Y 2020 Phys. Rev. B 101 085120
[24] Lin G, Jeong J, Kim C, et al. 2021 Nat. Commun. 12 5559
[25] Li X, Gu Y, Chen Y, Garlea V O, Iida K, Kamazawa K, Li Y, Deng G, Xiao Q, Zheng X, Ye Z, Peng Y, Zaliznyak I A, Tranquada J M and Li Y 2022 Phys. Rev. X 12 041024
[26] Hu Z, Chen Y, Cui Y, Li S, Li C, Xu X, Chen Y, Li X, Gu Y, Yu R, Zhou R, Li Y and Yu W 2024 Phys. Rev. B 109 054411
[27] Shangguan Y, Bao S, Dong Z Y, et al. 2023 Nat. Phys. 19 1883
[28] Schotte U, Stusser N, Schotte K D, Weinfurter H, Mayer H M and Winkelmann M 1994 J. Phys. Condens. Matter 6 10105
[29] Ono T, Tanaka H, Aruga Katori H, Ishikawa F, Mitamura H and Goto T 2003 Phys. Rev. B 67 104431
[30] Tsujii H, Rotundu C R, Ono T, Tanaka H, Andraka B, Ingersent K and Takano Y 2007 Phys. Rev. B 76 060406
[31] Fortune N A, Hannahs S T, Yoshida Y, Sherline T E, Ono T, Tanaka H and Takano Y 2009 Phys. Rev. Lett. 102 257201
[32] Shirata Y, Tanaka H, Matsuo A and Kindo K 2012 Phys. Rev. Lett. 108 057205
[33] Zhou H D, Xu C, Hallas A M, Silverstein H J, Wiebe C R, Umegaki I, Yan J Q, Murphy T P, Park J H, Qiu Y, Copley J R D, Gardner J S and Takano Y 2012 Phys. Rev. Lett. 109 267206
[34] Susuki T, Kurita N, Tanaka T, Nojiri H, Matsuo A, Kindo K and Tanaka H 2013 Phys. Rev. Lett. 110 267201
[35] Kamiya Y, Ge L, Hong T, et al. 2018 Nat. Commun. 9 2666
[36] Zhitomirsky M E 2002 Phys. Rev. Lett. 88 057204
[37] Damle K and Senthil T 2006 Phys. Rev. Lett. 97 067202
[38] Nishimoto S, Shibata N and Hotta C 2013 Nat. Commun. 4 2287
[39] Adhikary M, Ralko A and Kumar B 2021 Phys. Rev. B 104 094416
[40] Gen M and Suwa H 2022 Phys. Rev. B 105 174424
[41] Lozovik Y and Notych O 1993 Solid State Commun. 85 873
[42] Kageyama H, Yoshimura K, Stern R, et al. 1999 Phys. Rev. Lett. 82 3168
[43] Kodama K, Takigawa M, Horvatić M, Berthier C, Kageyama H, Ueda Y, Miyahara S, Becca F and Mila F 2002 Science 298 395
[44] Chubukov A V and Golosov D I 1991 J. Phys. Condens. Matter 3 69
[45] Honecker A 1999 J. Phys. Condens. Matter 11 4697
[46] Starykh O A 2015 Rep. Prog. Phys. 78 052502
[47] Zhitomirsky M E, Honecker A and Petrenko O 2000 Phys. Rev. Lett. 85 3269
[48] Kawamura H and Miyashita S 1985 J. Phys. Soc. Jpn. 54 4530
[49] Henley C L 1989 Phys. Rev. Lett. 62 2056
[50] Alicea J, Chubukov A V and Starykh O A 2009 Phys. Rev. Lett. 102 137201
[51] Coletta T, Zhitomirsky M E and Mila F 2013 Phys. Rev. B 87 060407
[52] Yamamoto D, Marmorini G and Danshita I 2014 Phys. Rev. Lett. 112 127203
[53] Inami T, Ajiro Y and Goto T 1996 J. Phys. Soc. Jpn. 65 2374
[54] Shirata Y, Tanaka H, Ono T, Matsuo A, Kindo K and Nakano H 2011 J. Phys. Soc. Jpn. 80 093702
[55] Hwang J, Choi E S, Ye F, Dela Cruz C R, Xin Y, Zhou H D and Schlottmann P 2012 Phys. Rev. Lett. 109 257205
[56] Seabra L, Momoi T, Sindzingre P and Shannon N 2011 Phys. Rev. B 84 214418
[57] Okutani A, Kida T, Narumi Y, Shimokawa T, Honda Z, Kindo K, Nakano T, Nozue Y and Hagiwara M 2019 J. Phys. Soc. Jpn. 88 013703
[58] Seibel E M, Roudebush J H, Wu H, Huang Q, Ali M N, Ji H and Cava R J 2013 Inorg. Chem. 52 13605
[1] Approximate constructions of counterdiabatic driving with NMR quantum systems
Hui Zhou(周辉), Xiaoli Dai(代晓莉), Jianpei Geng(耿建培), Yunlan Ji(季云兰), and Xinhua Peng(彭新华). Chin. Phys. B, 2024, 33(9): 090301.
[2] Tri-hexagonal charge order in kagome metal CsV3Sb5 revealed by 121Sb nuclear quadrupole resonance
Chao Mu(牟超), Qiangwei Yin(殷蔷薇), Zhijun Tu(涂志俊), Chunsheng Gong(龚春生), Ping Zheng(郑萍), Hechang Lei(雷和畅), Zheng Li(李政), and Jianlin Luo(雒建林). Chin. Phys. B, 2022, 31(1): 017105.
[3] Resistivity minimum emerges in Anderson impurity model modified with Sachdev-Ye-Kitaev interaction
Lan Zhang(张欄), Yin Zhong(钟寅), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(4): 047106.
[4] Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs
A F Fang(房爱芳), R Zhou(周睿), H Tukada, J Yang(杨杰), Z Deng(邓正), X C Wang(望贤成) , C Q Jin(靳常青), and Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2021, 30(4): 047403.
[5] Spin correlations in the S=1 armchair chain Ni2NbBO6 as seen from NMR
Kai-Yue Zeng(曾凯悦), Long Ma(马龙), Long-Meng Xu(徐龙猛), Zhao-Ming Tian(田召明), Lang-Sheng Ling(凌浪生), and Li Pi(皮雳). Chin. Phys. B, 2021, 30(4): 047503.
[6] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[7] NMR and NQR studies on transition-metal arsenide superconductors LaRu2As2, KCa2Fe4As4F2, and A2Cr3As3
Jun Luo(罗军), Chunguang Wang(王春光) Zhicheng Wang(王志成), Qi Guo(郭琦), Jie Yang(杨杰), Rui Zhou(周睿), K Matano, T Oguchi, Zhian Ren(任治安), Guanghan Cao(曹光旱), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2020, 29(6): 067402.
[8] High-magnetic-field induced charge order in high-Tc cuprate superconductors
L X Zheng(郑立玄), J Li(李建), T Wu(吴涛). Chin. Phys. B, 2019, 28(11): 117402.
[9] Progress of novel diluted ferromagnetic semiconductors with decoupled spin and charge doping: Counterparts of Fe-based superconductors
Shengli Guo(郭胜利), Fanlong Ning(宁凡龙). Chin. Phys. B, 2018, 27(9): 097502.
[10] Nuclear magnetic resonance measurement station in SECUF using hybrid superconducting magnets
Zheng Li(李政), Guo-qing Zheng(郑国庆). Chin. Phys. B, 2018, 27(7): 077404.
[11] Structural phase transition, precursory electronic anomaly, and strong-coupling superconductivity in quasi-skutterudite (Sr1-xCax)3Ir4Sn13 and Ca3Rh4Sn13
Jun Luo(罗军), Jie Yang(杨杰), S Maeda, Zheng Li(李政), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2018, 27(7): 077401.
[12] NMR evidence of charge fluctuations in multiferroic CuBr2
Rui-Qi Wang(王瑞琦), Jia-Cheng Zheng(郑家成), Tao Chen(陈涛), Peng-Shuai Wang(王朋帅), Jin-Shan Zhang(张金珊), Yi Cui(崔祎), Chong Wang(王冲), Yuan Li(李源), Sheng Xu(徐胜), Feng Yuan(袁峰), Wei-Qiang Yu(于伟强). Chin. Phys. B, 2018, 27(3): 037502.
[13] Nuclear magnetic resonance for quantum computing: Techniques and recent achievements
Tao Xin(辛涛), Bi-Xue Wang(王碧雪), Ke-Ren Li(李可仁), Xiang-Yu Kong(孔祥宇), Shi-Jie Wei(魏世杰), Tao Wang(王涛), Dong Ruan(阮东), Gui-Lu Long(龙桂鲁). Chin. Phys. B, 2018, 27(2): 020308.
[14] Optical pumping nuclear magnetic resonance system rotating in a plane parallel to the quantization axis
Zhi-Chao Ding(丁志超), Jie Yuan(袁杰), Hui Luo(罗晖), Xing-Wu Long(龙兴武). Chin. Phys. B, 2017, 26(9): 093301.
[15] Parameter analysis for a nuclear magnetic resonance gyroscope based on bf133Cs-129Xe/131Xe
Da-Wei Zhang(张大伟), Zheng-Yi Xu(徐正一), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2017, 26(2): 023201.
No Suggested Reading articles found!