Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 090201    DOI: 10.1088/1674-1056/add901
GENERAL   Next  

Non-Hermitian mosaic Aubry-Andre-Harper model

Yingshixiang Wang(王应时翔)1,2, Dongze Song(宋东泽)1,2, and Xu Xia(夏旭)1,†
1 Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  We focus on a modified version of the non-Hermitian Aubry-Andre-Harper (AAH) model, which has garnered significant attention due to its ability to investigate localization phenomena, metal-insulator transitions, and topological phase transitions. We have made two key modifications to the non-Hermitian AAH model: First, we introduce a mosaic structure that allows for the mixing of localized and extended states, resulting in the appearance of mobility edges, which is a feature that is not present in the original non-Hermitian AAH model. In the insulating phase, leveraging Fields Medal winner Avila's global theory, our work derives a theoretical description of the localization length, a crucial parameter previously unavailable in the non-Hermitian AAH model, and obtains the exact expression for mobility edges. We studied the variation of the energy spectrum with the amplitude and quantitatively determined the topological phase transition point within the spectrum. Furthermore, we introduced an asymmetric parameter $g$ and calculated its corresponding localization length, the location of mobility edges, as well as the precise expressions for its extended and localized states. By quantitatively calculating the Lyapunov exponent of dual models, our work reveals an interesting fact about the robustness of localized states: within an appropriate relationship between $g$ and the coupling potential strength, the localized states exhibit similar characteristics to those in the mosaic non-Hermitian AAH model. Our work offers a more complete and nuanced understanding of localization phenomena in disordered non-Hermitian systems, paving the way for further research in this promising field.
Keywords:  disordered non-Hermitian systems      mosaic structure      mobility edge  
Received:  25 March 2025      Revised:  30 April 2025      Accepted manuscript online:  15 May 2025
PACS:  02.30.Tb (Operator theory)  
  02.70.Hm (Spectral methods)  
  72.20.Ee (Mobility edges; hopping transport)  
  72.15.Rn (Localization effects (Anderson or weak localization))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12301218).
Corresponding Authors:  Xu Xia     E-mail:  xiaxu14@mails.ucas.ac.cn

Cite this article: 

Yingshixiang Wang(王应时翔), Dongze Song(宋东泽), and Xu Xia(夏旭) Non-Hermitian mosaic Aubry-Andre-Harper model 2025 Chin. Phys. B 34 090201

[1] Anderson P W 1958 Phys. Rev. 109 1492
[2] Abrahams E, Anderson P W, Licciardello D C and Ramakrishnan T V 1979 Phys. Rev. Lett. 42 673
[3] Kondov S S, McGehee W R, Zirbel J J and DeMarco B 2011 Science 334 66
[4] Jendrzejewski F, Bernard A, Muller A, Cheinet P, Josse V, Piraud M, Pezze L, Sanchez-Palencia L, Aspect A and Bouyer P 2011 Nat. Phys. 8 398
[5] Semeghini G, Landini M, Castilho P, Roy S, Spagnolli G, Trenkwalder A, Fattori M, Inguscio M and Modugno G 2014 Nat. Phys. 11 545
[6] Biddle J and Sarma S D 2010 Phys. Rev. Lett. 104 070601
[7] Aubry S and Andre G 1980 Annales de l’Institut Henri Poincare 40 197
[8] Evers F and Mirlin A D 2008 Rev. Mod. Phys. 80 1355
[9] Jiang S, Liu Y and Lang L 2023 Chin. Phys. B 32 097204
[10] Tang Q and He Y 2023 Chin. Phys. B 32 127202
[11] Liu T and Cheng S 2023 Chin. Phys. B 32 027102
[12] Li J, Gong Z and Zhang X 2018 Phys. Rev. X 8 031079
[13] Liu T, Guo H, Pu Y and Longhi S 2020 Phys. Rev. B 102 024205
[14] Longhi S 2019 Phys. Rev. B 100 125157
[15] Prodan E, Hughes T L and Bernevig B A 2010 Phys. Rev. Lett. 105 115501
[16] Tran D T, Dauphin A, Goldman N and Gaspard P 2015 Phys. Rev. B 91 085125
[17] Irsigler B, Zheng J H and Hofstetter W 2019 Phys. Rev. Lett. 122 010406
[18] Gebert U, Irsigler B and Hofstetter W 2020 Phys. Rev. A 101 063606
[19] Ulcakar L, Mravlje J and Rejec T 2020 Phys. Rev. Lett. 125 216601
[20] Avila A 2015 Acta Mathematica 215 1
[21] Avila A, Jitomirskaya S and Sadel C 2014 J. Eur. Math. Soc. 16 1915
[22] Caio M D, Moller G, Cooper N R and Bhaseen M 2019 Nat. Phys. 15 257
[23] Song F, Yao S and Wang Z 2019 Phys. Rev. Lett. 123 246801
[24] Bourgain J and Jitomirskaya S 2002 J. Stat. Phys. 108 1203
[25] Bianco R and Resta R 2011 Phys. Rev. B 84 241106
[26] Longhi S 2019 Phys. Rev. B 100(X) 125157
[1] Mobility edges and localization characteristics in one-dimensional quasiperiodic quantum walk
Xin-Hui Cui(崔鑫辉), Hui-Min Wang(王慧敏), and Zhi-Jian Li(李志坚). Chin. Phys. B, 2024, 33(6): 060301.
[2] General mapping of one-dimensional non-Hermitian mosaic models to non-mosaic counterparts: Mobility edges and Lyapunov exponents
Sheng-Lian Jiang(蒋盛莲), Yanxia Liu(刘彦霞), and Li-Jun Lang(郎利君). Chin. Phys. B, 2023, 32(9): 097204.
[3] Mobility edges generated by the non-Hermitian flatband lattice
Tong Liu(刘通) and Shujie Cheng(成书杰). Chin. Phys. B, 2023, 32(2): 027102.
[4] Mobility edges in one-dimensional finite-sized models with large quasi-periodic disorders
Qiyun Tang(汤起芸) and Yan He(贺言). Chin. Phys. B, 2023, 32(12): 127202.
[5] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[6] Majorana zero modes, unconventional real-complex transition, and mobility edges in a one-dimensional non-Hermitian quasi-periodic lattice
Shujie Cheng(成书杰) and Xianlong Gao(高先龙). Chin. Phys. B, 2022, 31(1): 017401.
[7] Mobility edges and reentrant localization in one-dimensional dimerized non-Hermitian quasiperiodic lattice
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Jun-Peng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(9): 097202.
[8] Analytical treatment of Anderson localization in a chain of trapped ions experiencing laser Bessel beams
Jun Wen(文军), Jian-Qi Zhang(张建奇), Lei-Lei Yan(闫磊磊), Mang Feng(冯芒). Chin. Phys. B, 2019, 28(1): 010306.
[9] Phase diagram of a family of one-dimensional nearest-neighbor tight-binding models with an exact mobility edge
Long-Yan Gong(巩龙延), Xiao-Xin Zhao(赵小新). Chin. Phys. B, 2017, 26(7): 077202.
[10] Uncertainties of clock and shift operators for an electron in one-dimensional nonuniform lattice systems
Long-Yan Gong(巩龙延), You-Gen Ding(丁友根), Yong-Qiang Deng(邓永强). Chin. Phys. B, 2017, 26(11): 117201.
[11] Depth-dependent mosaic tilt and twist in GaN epilayer:An approximate evaluation
Zhang Jin-Feng (张金风), Nie Yu-Hu (聂玉虎), Zhou Yong-Bo (周勇波), Tian Kun (田坤), Ha Wei (哈微), Xiao Ming (肖明), Zhang Jin-Cheng (张进成), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(6): 068102.
[12] Microstructure and strain analysis of GaN epitaxial films using in-plane grazing incidence x-ray diffraction
Guo Xi (郭希), Wang Yu-Tian (王玉田), Zhao De-Gang (赵德刚), Jiang De-Sheng (江德生), Zhu Jian-Jun (朱建军), Liu Zong-Shun (刘宗顺), Wang Hui (王辉), Zhang Shu-Ming (张书明), Qiu Yong-Xin (邱永鑫), Xu Ke (徐科), Yang Hui (杨辉). Chin. Phys. B, 2010, 19(7): 076804.
[13] Fidelity of an electron in one-dimensional determined potentials
Song Wen-Guang(宋文广) and Tong Pei-Qing(童培庆) . Chin. Phys. B, 2009, 18(11): 4707-4710.
[14] Molecular dynamics study of mosaic structure in the Ni-based single-crystal superalloy
Zhu Tao(朱弢) and Wang Chong-Yu(王崇愚). Chin. Phys. B, 2006, 15(9): 2087-2091.
No Suggested Reading articles found!