Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 110303    DOI: 10.1088/1674-1056/addcbe
GENERAL Prev   Next  

Exceptional rings and non-Abelian topology in non-Hermitian high-spin systems

Peng-Zhen Sun(孙鹏震), Zhou-Tao Lei(雷周涛), and Yuan-Gang Deng(邓元刚)
Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing & School of Physics and Astronomy, Sun Yat-Sen University (Zhuhai Campus), Zhuhai 519082, China
Abstract  Topological phases featuring non-Abelian charges have garnered significant attention in recent years. In parallel, the study of multiband exceptional topology in non-Hermitian systems has emerged as a prominent research direction. In this study, we investigate a parity-time (PT) symmetric Hamiltonian, which hosts both conventional non-Abelian topological phases (NATPs) and hybrid phases. We propose an experimental scheme using spin-1 atoms with spin-orbit coupling trapped in two-dimensional (2D) lattices. Before adding a non-Hermitian term, we find the emergence of distinct topological phases mixed by two NATPs and establish their connection with NATPs theory. When a non-Hermitian term that preserves PT symmetry protection was introduced, stable second-order exceptional rings and third-order exceptional points emerge and they drive the edge states to manifest as discontinuous Fermi arcs in the surface Brillouin zone. However, with the variation of the non-Hermitian term, it is rather intriguing that two types of exceptional rings here transition from being internally tangent to externally tangent, transforming into a new topological phase equivalent to the Hermitian case. This research provides deeper insights into the nature of NATPs and the topological implications of exceptional structures, contributing to the field of topological physics.
Keywords:  non-Abelian topology      parity-time symmetry      exceptional point      ultracold atoms  
Received:  19 March 2025      Revised:  21 May 2025      Accepted manuscript online:  23 May 2025
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  11.30.Er (Charge conjugation, parity, time reversal, and other discrete symmetries)  
  42.50.-p (Quantum optics)  
  67.85.-d (Ultracold gases, trapped gases)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274473 and 12135018).
Corresponding Authors:  Yuan-Gang Deng     E-mail:  dengyg3@mail.sysu.edu.cn

Cite this article: 

Peng-Zhen Sun(孙鹏震), Zhou-Tao Lei(雷周涛), and Yuan-Gang Deng(邓元刚) Exceptional rings and non-Abelian topology in non-Hermitian high-spin systems 2025 Chin. Phys. B 34 110303

[1] Zhang H, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
[2] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[3] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[4] Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A and Wang Z 2019 Nature 566 480
[5] Zhang T, Jiang Y, Song Z, Huang H, He Y, Fang Z, Weng H and Fang C 2019 Nature 566 475
[6] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[7] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005
[8] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[9] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083
[10] Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
[11] Goldman N, Budich J C and Zoller P 2016 Nat. Phys. 12 639
[12] Song B, Zhang L, He C, Poon T F J, Hajiyev E, Zhang S, Liu X J and Jo G B 2018 Sci. Adv. 4 aao4748
[13] H M B, Boguslawski M, Barrios M, Xin L and Chapman M S 2019 Phys. Rev. Lett. 123 173202
[14] Song B, He C, Niu S, Zhang L, Ren Z, Liu X J and Jo G B 2019 Nat. Phys. 15 911
[15] Lei Z, Deng Y and Lee C 2020 Phys. Rev. A 102 013301
[16] Lei Z, Deng Y and Lee C 2022 Phys. Rev. Res. 4 033008
[17] Liang Q, Xie D, Dong Z, Li H, Li H, Gadway B, Yi W and Yan B 2022 Phys. Rev. Lett. 129 070401
[18] Leonard J, Kim S, Kwan J, Segura P, Grusdt F, Repellin C, Goldman N and Greiner M 2023 Nature 619 495
[19] Cornish S L, Tarbutt M R and Hazzard K R A 2024 Nat. Phys. 20 730
[20] Zhao E, Wang Z, He C, Poon T F J, Pak K K, Liu Y J, Ren P, Liu X J and Jo G B 2025 Nature 637 565
[21] Lu L, Joannopoulos J D and Soljaci c M 2014 Nat. Photon. 8 821
[22] Gross C and Bloch I 2017 Science 357 995
[23] Raghu S and Haldane F D M 2008 Phys. Rev. A 78 033834
[24] Cerjan A, Huang S, Wang M, Chen K P, Chong Y and Rechtsman M C 2019 Nat. Photon. 13 623
[25] Miri M A and Alu A 2019 Science 363 eaar7709
[26] Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White T C, Mutus J, Fowler A G, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Neill C, O’Malley P, Roushan P, Vainsencher A, Wenner J, Korotkov A N, Cleland A N and Martinis J M 2014 Nature 508 500
[27] Satzinger K J, Liu Y J and Smith A E 2021 Science 374 1237
[28] Semeghini G, Levine H, Keesling A, Ebadi S, Wang T T, Bluvstein D, Verresen R, Pichler H, Kalinowski M, Samajdar R, Omran A, Sachdev S, Vishwanath A, Greiner M, Vuletic V and Lukin M D 2021 Science 374 1242
[29] Altland A and Zirnbauer M R 1997 Phys. Rev. B 55 1142
[30] Ryu S, Schnyder A P, Furusaki A and Ludwig A W W 2010 New J. Phys. 12 065010
[31] Zhao Y X, Chen C, Sheng X L and Yang S A 2021 Phys. Rev. Lett. 126 196402
[32] Tang F, Po H C, Vishwanath A and Wan X 2019 Nature 566 486
[33] Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405
[34] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[35] Schnyder A P, Ryu S, Furusaki A and Ludwig A W W 2008 Phys. Rev. B 78 195125
[36] Wu Q, Soluyanov A A and Bzdusek T 2019 Science 365 1273
[37] Ahn J, Park S and Yang B J 2019 Phys. Rev. X 9 021013
[38] Bouhon A, Bzdusek T and Slager R J 2020 Phys. Rev. B 102 115135
[39] Jiang B, Bouhon A, Lin Z K, Zhou X, Hou B, Li F, Slager R J and Jiang J H 2021 Nat. Phys. 17 1239
[40] Guo C X, Chen S, Ding K and Hu H 2023 Phys. Rev. Lett. 130 157201
[41] Sun X C, Wang J B, He C and Chen Y F 2024 Phys. Rev. Lett. 132 216602
[42] Unal F N, Bouhon A and Slager R J 2020 Phys. Rev. Lett. 125 053601
[43] Guo Q, Jiang T, Zhang R Y, Zhang L, Zhang Z Q, Yang B, Zhang S and Chan C T 2021 Nature 594 195
[44] Li T and Hu H 2023 Nat. Commun. 14 6418
[45] Bouhon A, Wu Q, Slager R J, Weng H, Yazyev O V and Bzdusek T 2020 Nat. Phys. 16 1137
[46] Wang K, Dutt A, Wojcik C C and Fan S 2021 Nature 598 59
[47] Hu H and Zhao E 2021 Phys. Rev. Lett. 126 010401
[48] Chen Z G, Zhang R Y, Chan C T and Ma G 2021 Nat. Phys. 18 179
[49] Patil Y S S, Holler J, Henry P A, Guria C, Zhang Y, Jiang L, Kralj N, Read N and Harris J G E 2022 Nature 607 271
[50] Rui W B, Zhao Y X and Wang Z D 2023 Phys. Rev. B 108 165105
[51] Zhang Q, Li Y, Sun H, Liu X, Zhao L, Feng X, Fan X and Qiu C 2023 Phys. Rev. Lett. 130 017201
[52] Xu S, Sun Z Z, Wang K and Li E A 2024 Nat. Phys. 20 1469
[53] Alicea J 2012 Rep. Prog. Phys. 75 076501
[54] Stern A and Lindner N H 2013 Science 339 1179
[55] Field B and Simula T 2018 Quantum Science and Technology 3 045004
[56] Ni X, He C, Sun X C, Liu X P, Lu M H, Feng L and Chen Y F 2015 New J. Phys. 17 053016
[57] Wang D, Yang B, Wang M, Zhang R Y, Li X, Zhang Z Q, Zhang S and Chan C T 2022 Phys. Rev. Lett. 129 263604
[58] Wang M, Liu S, Ma Q, Zhang R Y, Wang D, Guo Q, Yang B, Ke M, Liu Z and Chan C T 2022 Phys. Rev. Lett. 128 246601
[59] Hu Y, Tong M, Jiang T, Jiang J H, Chen H and Yang Y 2024 Nat. Commun. 15 10036
[60] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[61] Mostafazadeh A 2002 J. Math. Phys. 43 205
[62] Feng L, El-Ganainy R and Ge L 2017 Nat. Photon. 11 752
[63] El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S and Christodoulides D N 2018 Nat. Phys. 14 11
[64] Heiss W D 2004 J. Phys. A: Math. Gen. 37 2455
[65] Dembowski C, Dietz B, Graf H D, Harney H L, Heine A, Heiss W D and Richter A 2004 Phys. Rev. E 69 056216
[66] Hassan A U, Zhen B, Soljacic M, Khajavikhan M and Christodoulides D N 2017 Phys. Rev. Lett. 118 093002
[67] Budich J C, Carlstrom J, Kunst F K and Bergholtz E J 2019 Phys. Rev. B 99 041406
[68] Zhou H and Lee J Y 2019 Phys. Rev. B 99 235112
[69] Yoshida T, Peters R, Kawakami N and Hatsugai Y 2019 Phys. Rev. B 99 121101
[70] Okugawa R and Yokoyama T 2019 Phys. Rev. B 99 041202
[71] Tang W, Jiang X, Ding K, Xiao Y X, Zhang Z Q, Chan C T and Ma G 2020 Science 370 1077
[72] Liu W, Wu Y, Duan C K, Rong X and Du J 2021 Phys. Rev. Lett. 126 170506
[73] Cayao J and Black-Schaffer A M 2023 Phys. Rev. B 107 104515
[74] Wang K, Xiao L, Lin H, Yi W, Bergholtz E J and Xue P 2023 Sci. Adv. 9 2375
[75] Wu Y, Wang Y, Ye X, Liu W, Niu Z, Duan C K, Wang Y, Rong X and Du J 2024 Nat. Nanotechnol. 19 160
[76] Xu Y, Wang S T and Duan L M 2017 Phys. Rev. Lett. 118 045701
[77] Holler J, Read N and Harris J G E 2020 Phys. Rev. A 102 032216
[78] Delplace P, Yoshida T and Hatsugai Y 2021 Phys. Rev. Lett. 127 186602
[79] Tang W, Ding K and Ma G 2023 Nat. Commun. 14 6660
[80] Montag A and Kunst F K 2024 Phys. Rev. Res. 6 023205
[81] Rotter I 2009 J. Phys. A: Math. Theor. 42 153001
[82] Lee T E 2016 Phys. Rev. Lett. 116 133903
[83] Leykam D, Bliokh K Y, Huang C, Chong Y D and Nori F 2017 Phys. Rev. Lett. 118 040401
[84] Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S and Ueda M 2018 Phys. Rev. X 8 031079
[85] Yao S and Wang Z 2018 Phys. Rev. Lett. 121 086803
[86] Lee C H, Li L and Gong J 2019 Phys. Rev. Lett. 123 016805
[87] Kawabata K, Sato M and Shiozaki K 2020 Phys. Rev. B 102 205118
[88] Zhang K, Yang Z and Fang C 2020 Phys. Rev. Lett. 125 126402
[89] Okuma N, Kawabata K, Shiozaki K and Sato M 2020 Phys. Rev. Lett. 124 086801
[90] Li Y, Liang C, Wang C, Lu C and Liu Y C 2022 Phys. Rev. Lett. 128 223903
[91] Zhu P, Sun X Q, Hughes T L and Bahl G 2023 Nat. Commun. 14 720
[92] Schindler F, Gu K, Lian B and Kawabata K 2023 PRX Quantum 4 030315
[93] Lin R, Tai T, Li L and Lee C H 2023 Front. Phys. 18 53605
[94] Ma X R, Cao K, Wang X R, Wei Z, Du Q and Kou S P 2024 Phys. Rev. Res. 6 013213
[95] Lei Z, Lee C H and Li L 2024 Commun. Phys. 7 100
[96] Luo X W, Sun K and Zhang C 2017 Phys. Rev. Lett. 119 193001
[97] Hu H, Hou J, Zhang F and Zhang C 2018 Phys. Rev. Lett. 120 240401
[98] Li D, Huang L, Peng P, Bian G, Wang P, Meng Z, Chen L and Zhang J 2020 Phys. Rev. A 102 013309
[99] Zhang M, Yuan X, Li Y, Luo X W, Liu C, Zhu M, Qin X, Zhang C, Lin Y and Du J 2022 Phys. Rev. Lett. 129 250501
[1] Non-quantized Zak phases, PT/APT symmetry transitions, and doubly degenerate exceptional points in a non-Hermitian spin-orbit coupled SSH model
Jun-Xing Huo(霍俊行), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2025, 34(7): 070301.
[2] Design of a high sensitivity and wide range angular rate sensor based on exceptional surface
Xinsheng Ding(丁鑫圣), Wenyao Liu(刘文耀), Shixian Wang(王师贤), Yu Tao(陶煜), Yanru Zhou(周彦汝), Yu Bai(白禹), Lai Liu(刘来), Enbo Xing(邢恩博), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2024, 33(8): 084204.
[3] Mode coupling with Fabry-Perot modes in photonic crystal slabs
Ken Qin(秦恳), Peng Hu(胡鹏), Jie Liu(刘杰), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2024, 33(8): 084205.
[4] Exceptional points and quantum dynamics in a non-Hermitian two-qubit system
Yi-Xi Zhang(张益玺), Zhen-Tao Zhang(张振涛), Zhen-Shan Yang(杨震山), Xiao-Zhi Wei(魏晓志), and Bao-Long Liang(梁宝龙). Chin. Phys. B, 2024, 33(6): 060308.
[5] Kármán vortex street in a spin-orbit-coupled Bose-Einstein condensate with PT symmetry
Kai-Hua Shao(邵凯花), Bao-Long Xi(席保龙), Zhong-Hong Xi(席忠红), Pu Tu(涂朴), Qing-Qing Wang(王青青), Jin-Ping Ma(马金萍), Xi Zhao(赵茜), and Yu-Ren Shi(石玉仁). Chin. Phys. B, 2024, 33(6): 060501.
[6] Enhanced sensing of anharmonicities in a gain-based anti-PT symmetric system
Ya-Wei Zeng(曾亚伟), Tian-Le Yang(杨天乐), Qi-Yin Lin(林琪茵), and Wan-Jun Su(苏万钧). Chin. Phys. B, 2024, 33(12): 124201.
[7] Quasi-anti-parity—time-symmetric single-resonator micro-optical gyroscope with Kerr nonlinearity
Jingtong Geng(耿靖童), Shuyi Xu(徐书逸), Ting Jin(靳婷), Shulin Ding(丁舒林), Liu Yang(杨柳), Ying Wang(王颖), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2024, 33(1): 014208.
[8] Majorana tunneling in a one-dimensional wire with non-Hermitian double quantum dots
Peng-Bin Niu(牛鹏斌) and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2024, 33(1): 017403.
[9] Theory of complex-coordinate transformation acoustics for non-Hermitian metamaterials
Hao-Xiang Li(李澔翔), Yang Tan(谭杨), Jing Yang(杨京), and Bin Liang(梁彬). Chin. Phys. B, 2023, 32(9): 094301.
[10] Nonlinear perturbation of a high-order exceptional point: Skin discrete breathers and the hierarchical power-law scaling
Hui Jiang(江慧), Enhong Cheng(成恩宏), Ziyu Zhou(周子榆), and Li-Jun Lang(郎利君). Chin. Phys. B, 2023, 32(8): 084203.
[11] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[12] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[13] Two-body exceptional points in open dissipative systems
Peize Ding(丁霈泽) and Wei Yi(易为). Chin. Phys. B, 2022, 31(1): 010309.
[14] Disorder in parity-time symmetric quantum walks
Peng Xue(薛鹏). Chin. Phys. B, 2022, 31(1): 010311.
[15] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
No Suggested Reading articles found!