|
|
|
$(\mathcal{PT})$-symmetry phase transition in a bipartite lattice with long-range interactions |
| Dapeng Zheng(郑大鹏), Siwu Li(李思吾), and Zeliang Xiang(项泽亮)† |
| School of Physics, Sun Yat-sen University, Guangzhou 510275, China |
|
|
|
|
Abstract We investigate the parity-time $(\mathcal{PT})$ symmetry-breaking quantum phase transition in a one-dimensional (1D) bosonic lattice featuring cavity-mediated long-range interactions and spatially staggered dissipation. By mapping the system to an effective spin chain under the constraints of hard-core bosons and integrating the mean-field decoupling approach with biorthogonal basis formalism, we derive a self-consistency equation. Numerical simulation results validate that the derived equation quantitatively captures the $\mathcal{PT}$-symmetry order parameter's phase diagram. Our findings reveal that coherent hopping maintains $\mathcal{PT}$ symmetry through quantum fluctuations. Conversely, cavity-engineered long-range interactions, in synergy with staggered dissipation, act in opposition to drive symmetry breaking. This competitive interplay can inspire further exploration of tunable quantum phase transitions in non-Hermitian systems.
|
Received: 10 April 2025
Revised: 23 May 2025
Accepted manuscript online: 26 May 2025
|
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
| |
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
| |
64.70.Tg
|
(Quantum phase transitions)
|
| |
05.30.Jp
|
(Boson systems)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12375025). |
Corresponding Authors:
Zeliang Xiang
E-mail: xiangzliang@mail.sysu.edu.cn
|
| About author: 2025-110305-250628.pdf |
Cite this article:
Dapeng Zheng(郑大鹏), Siwu Li(李思吾), and Zeliang Xiang(项泽亮) $(\mathcal{PT})$-symmetry phase transition in a bipartite lattice with long-range interactions 2025 Chin. Phys. B 34 110305
|
[1] Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108 [2] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885 [3] Lewenstein M, Sanpera A and Ahufinger V 2012 Ultracold Atoms in Optical Lattices (Oxford University Press) [4] Eckardt A 2017 Rev. Mod. Phys. 89 011004 [5] Gross C and Bloch I 2017 Science 357 995 [6] Schäfer F, Fukuhara T, Sugawa S, Takasu Y and Takahashi Y 2020 Nat. Rev. Phys. 2 411 [7] Fisher M P A, Weichman P B, Grinstein G and Fisher D S 1989 Phys. Rev. B 40 546 [8] Freericks J K and Monien H 1994 Europhys. Lett. 26 545 [9] Kühner T D and Monien H 1998 Phys. Rev. B 58 R14741 [10] Greiner M, Mandel O, Esslinger T, Hänsch T W and Bloch I 2002 Nature 415 39 [11] BakrWS, Peng A, TaiME, Ma R, Simon J, Gillen J I, Fölling S, Pollet L and Greiner M 2010 Science 329 547 [12] CazalillaMA, Citro R, Giamarchi T, Orignac E and Rigol M 2011 Rev. Mod. Phys. 83 1405 [13] Breuer H P and Petruccione F 2007 The Theory of Open Quantum Systems (Oxford University Press) [14] Diehl S, Micheli A, Kantian A, Kraus B, Büchler H P and Zoller P 2008 Nat. Phys. 4 878 [15] Hannukainen J and Larson J 2018 Phys. Rev. A 98 042113 [16] Maschler C and Ritsch H 2005 Phys. Rev. Lett. 95 260401 [17] Maschler C, Mekhov I B and Ritsch H 2008 Eur. Phys. J. D 46 545 [18] Ritsch H, Domokos P, Brennecke F and Esslinger T 2013 Rev. Mod. Phys. 85 553 [19] Habibian H, Winter A, Paganelli S, Rieger H and Morigi G 2013 Phys. Rev. Lett. 110 075304 [20] Mivehvar F, Piazza F, Donner T and Ritsch H 2021 Adv. Phys. 70 1 [21] Jaksch D and Zoller P 2005 Ann. Phys. 315 52 [22] Lewenstein M, Sanpera A, Ahufinger V, Damski B, SenDe A and Sen U 2007 Adv. Phys. 56 243 [23] Landig R, Hruby L, Dogra N, Landini M, Mottl R, Donner T and Esslinger T 2016 Nature 532 476 [24] Dogra N, Brennecke F, Huber S D and Donner T 2016 Phys. Rev. A 94 023632 [25] Niederle A E, Morigi G and Rieger H 2016 Phys. Rev. A 94 033607 [26] Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A and Christodoulides D N 2009 Phys. Rev. Lett. 103 093902 [27] Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 192 [28] Kepesidis K V, Milburn T J, Huber J, Makris K G, Rotter S and Rabl P 2016 New J. Phys. 18 095003 [29] Wu Y, LiuW, Geng J, Song X, Ye X, Duan C K, Rong X and Du J 2019 Science 364 878 [30] Huber J, Kirton P, Rotter S and Rabl P 2020 SciPost Physics 9 052 [31] Nakanishi Y and Sasamoto T 2022 Phys. Rev. A 105 022219 [32] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243 [33] Bender C M 2007 Rep. Prog. Phys. 70 947 [34] El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S and Christodoulides D N 2018 Nat. Phys. 14 11 [35] Moca C P, Sticlet D, Dóra B and Zaránd G 2023 Phys. Rev. B 107 115111 [36] Yan X, Wu H, Fan C, Yang B, Guo Y, Luo X, Xiao J and Zeng Z Y 2025 Phys. Scri. 100 055406 [37] Kattel P, Pasnoori P R and Andrei N 2023 J. Phys. A: Math. Theor. 56 325001 [38] Despres J, Mazza L and Schir`o M 2024 Phys. Rev. B 110 094304 [39] Reisenbauer M, Rudolph H, Egyed L, Hornberger K, Zasedatelev A V, Abuzarli M, Stickler B A and Delić U 2024 Nat. Phys. 20 1629 [40] Zhang Y, Carrasquilla J and Kim Y B 2025 Nat. Commun. 16 3286 [41] Kattel P, Zhakenov A, Pasnoori P R, Azaria P and Andrei N 2025 Phys. Rev. B 111 L201106 [42] Li Z, Delmonte A, Turkeshi X and Fazio R 2025 Nat. Commun. 16 4329 [43] Rafi-Ul-Islam S M, Siu Z B, Sahin H, Razo M S H and Jalil M B A 2024 Phys. Rev. B 109 045410 [44] Baumann K, Guerlin C, Brennecke F and Esslinger T 2010 Nature 464 1301 [45] Blaß B, Rieger H, Roósz G and Iglói F 2018 Phys. Rev. Lett. 121 095301 [46] Yamamoto K, Nakagawa M, Adachi K, Takasan K, Ueda M and Kawakami N 2019 Phys. Rev. Lett. 123 123601 [47] Hatano N and Nelson D R 1996 Phys. Rev. Lett. 77 570 [48] Sachdev S 2009 Quantum Phase Transitions transferred to digital printing ed (Cambridge: Cambridge University Press) [49] Larson J, Damski B, Morigi G and Lewenstein M 2008 Phys. Rev. Lett. 100 050401 [50] Fernández-Vidal S, De Chiara G, Larson J and Morigi G 2010 Phys. Rev. A 81 043407 [51] Habibian H, Winter A, Paganelli S, Rieger H and Morigi G 2013 Phys. Rev. Lett. 110 075304 [52] Habibian H, Winter A, Paganelli S, Rieger H and Morigi G 2013 Phys. Rev. A 88 043618 [53] Bernardet K, Batrouni G G, Meunier J L, Schmid G, Troyer M and Dorneich A 2002 Phys. Rev. B 65 104519 [54] Jordan P and Wigner E 1928 Zeitschrift für Physik 47 631 [55] Giamarchi T 2003 Quantum Physics in One Dimension (Oxford University Press) [56] Sachdev S 2015 Quantum Phase Transitions second edition, 5th edn. (Cambridge: Cambridge University Press) [57] Altland A and Simons B 2010 Condensed Matter Field Theory 2nd edn. (Cambridge; New York: Cambridge University Press) [58] Moiseyev N 2011 Non-Hermitian Quantum Mechanics (Cambridge University Press) [59] Zhou Y, Kanoda K and Ng T K 2017 Rev. Mod. Phys. 89 025003 [60] Sandvik A W, Avella A and Mancini F 2010 Computational Studies of Quantum Spin Systems (Vietri sul Mare, (Italy)) pp. 135-338 [61] Manousakis E 1991 Rev. Mod. Phys. 63 1 [62] Sandvik A W 1997 Phys. Rev. B 56 11678 [63] Li H X, Tan Y, Yang J and Liang B 2023 Chin. Phys. B 32 094301 [64] Li Y, Xing C, Gong M, Guo G and Yuan J 2024 Chin. Phys. Lett. 41 026701 [65] Liu J Y, Wang X Q and Xu Z F 2023 Chin. Phys. Lett. 40 086701 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|