Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 077701    DOI: 10.1088/1674-1056/adcb23
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Growth diagram of AlN epilayers grown by plasma-assisted molecular beam epitaxy

Huan Liu(刘欢)1, Pengfei Shao(邵鹏飞)1,2,†, Yu Liu(柳裕)1, Qi Yao(姚齐)1, Tao Tao(陶涛)1, Zili Xie(谢自力)1, Dunjun Chen(陈敦军)1, Bin Liu(刘斌)1, Hai Lu(陆海)1,2, Rong Zhang(张荣)1,2,3, and Ke Wang(王科)1,2,‡
1 Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
2 Hefei National Laboratory, Hefei 230088, China;
3 Xiamen University, Xiamen 361005, China
Abstract  We have investigated homoepitaxy of AlN films grown by molecular beam epitaxy (MBE) on AlN/sapphire templates. The MBE epitaxy of AlN at the low temperature range, which is suitable for AlGaN, encounters significant challenge in preventing Al droplet and pits, since the migration and desorption rate of Al atom are very low. In contrast, by elevating the growth temperature, such a difficulty can be effectively overcome, and we were able to grow AlN films with much improved surface morphology and obtained step flow growth mode without any Al droplets and pits. The cathodoluminescence spectroscopy indicate that the impurity incorporation and defect generation in the AlN epilayers was suppressed by elevating the growth temperature. A systematic investigation on the influence of Al beam flux and growth temperature in a very wide range on the AlN films has been conducted, and a comprehensive growth diagram of MBE AlN has been obtained.
Keywords:  AlN      epitaxy      films morphology      growth diagram  
Received:  04 March 2025      Revised:  07 April 2025      Accepted manuscript online:  10 April 2025
PACS:  77.55.hd (AlN)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  68.55.J- (Morphology of films)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: Project supported by the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0303400), the National Key Research and Development Program of China (Grant Nos. 2022YFB3605602 and 2024YFE0205000), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20243037), and the Jiangsu Special Professorship, Collaborative Innovation Center of Solid-state Lighting and Energy-saving Electronics, Postdoctoral Fellowship Program of CPSF (Grant No. GZC20231098).
Corresponding Authors:  Pengfei Shao, Ke Wang     E-mail:  pfshao@nju.edu.cn;kewang@nju.edu.cn

Cite this article: 

Huan Liu(刘欢), Pengfei Shao(邵鹏飞), Yu Liu(柳裕), Qi Yao(姚齐), Tao Tao(陶涛), Zili Xie(谢自力), Dunjun Chen(陈敦军), Bin Liu(刘斌), Hai Lu(陆海), Rong Zhang(张荣), and Ke Wang(王科) Growth diagram of AlN epilayers grown by plasma-assisted molecular beam epitaxy 2025 Chin. Phys. B 34 077701

[1] Taniyasu Y, Kasu M, Makimoto T 2006 Nature 441 325
[2] Li X H, Detchprohm T, Kao T T, et al. 2014 Appl. Phys. Lett. 105 141106
[3] Melo E G and Alayo M I 2015 Photonics and Nanostructures- Fundamentals and Applications 14 35
[4] Wang X P, Fabi G, Chaudhuri R, Hickman A, Asadi M J, Nomoto K, Xing H G, Jena D, Farina M and Hwang J C M 2022 Appl. Phys. Lett. 120 012103
[5] Qi M, Li G, Ganguly S, Zhao P, Yan X, Verma J, Song B, Zhu M, Nomoto K and Xing H G 2017 Appl. Phys. Lett. 110 063501
[6] Collazo R, Mita S, Xie J, Rice A, Tweedie J, Dalmau R and Sitar Z 2011 Phys. Status Solidi C 8 2031
[7] Wang C, Gao X D, Li D D, Chen J J, Chen J F, Dong X M, Wang X D, Huang J, Zeng X H and Xu K 2024 Chin. Phys. B 32 026802
[8] Su Z L, Li Y F, Hu X T, Song Y M, Deng Z, Ma Z G, Du C H, Wang W X, Jia H Q, Jiang Y and Chen H 2024 Chin. Phys. B 33 117801
[9] Sun H D, Mitra S, Subedi R C, Zhang Y, Guo W, Ye J C, Shakfa M K, Ng T K, Ooi B S, Roqan I S, Zhang Z H, Dai J N, Chen C Q and Long S B 2019 Adv. Funct. Mater. 29 1905445
[10] Xu H Q, Jiang J A, Sheikhi M, Chen Z Y, Hoo J, Guo S P, Guo W, Sun H D and Ye J C 2019 Superlattices and Microstructures 129 20
[11] Guo W, Sun H D, Torre B, Li J M, Sheikhi M, Jiang J A, Li H W, Guo S P, Li K H, Lin R H, Giugni A, Di Fabrizio E, Li X H and Ye J C 2018 Adv. Funct. Mater. 28 1802395
[12] Ding Y, Zhou S, Zhuang Z, Sang Y, Yu J, Xu F, Huang J, Xu W, Tao T, Zhi T, Lu H, Huang K, Zhang R and Liu B 2023 Opt. Express 31 24
[13] Zhou S, Liao Z, Sun K, Zhang Z, Qian Y, Liu P, Du P, Jiang J, Lv Z and Qi S 2024 Laser Photon. Rev. 18 2300464
[14] Da B, Herath Mudiyanselage D, Wang D, He Z and Fu H 2024 Appl. Phys. Express 17 104002
[15] Cao H, Nong M, Liu T, Garcia GI, Liu Z, Tang X, Kumar M, Sarkar B, Wu Y and Li X 2025 Trans. Electron Dev. 72 1533
[16] Zhao L, Yang K, Ai Y, Zhang L, Niu X, Lv H and Zhang Y 2018 J. Mater. Sci.: Mater. Elect. 29 13766
[17] Nakarmi M L, Cai B, Lin J Y and Jiang H X 2012 Phys. Status Solidi A 209 126
[18] Wu Y Z, Liu B, Li Z H, Tao T, Xie Z L, Xiu X Q, Chen P, Chen D J, Lu H, Shi Y, Zhang R and Zheng Y D 2019 J. Cryst. Growth 506 30
[19] Rice A, Collazo R, Tweedie J, Dalmau R, Mita S, Xie J and Sitar Z 2010 J. Appl. Phys. 108 043510
[20] Dycus J H, Mirrielees K J, Grimley E D, Kirste R, Mita S, Sitar Z, Collazo R, Irving D L and James M 2017 Microscopy & Microanalysis 23 1444
[21] Cho Y J, Celesta S C, Kevin L, Mingli G, Nomoto K, Masato T, Schowalter L J, Muller D A, Jene D and Huili G X 2020 Appl. Phys. Lett. 116 172106
[22] Heying B, Averbeck R, Chen L F, Haus E, Riechert H and Speck J S 2000 J. Appl. Phys. 88 1855
[23] Li Z H, Shao P F, Shi G J, Wu Y Z, Wang Z P, Li S Q, Zhang D Q, Tao T, Xu Q J, Xie Z L, Ye J D, Chen D J, Liu B, Wang K, Zheng Y D and Zhang R 2022 Chin. Phys. B 31 018102
[24] Kaneko M, Hirai K, Kimoto T and Suda J 2020 Appl. Phys. Express 13 025503
[25] Lee K, Cho Y J, Schowalter L J, Toita M, Xing H G and Jena D 2020 Appl. Phys. Lett. 116 262102
[26] Yamaguchi T, Uematsu N and Araki T 2013 J. Cryst. Growth 377 123
[27] Burnham S D, Henderson W and Doolittle W A 2008 Phys. Status Solidi C 5 1855
[28] Burnham S D, Namkoong G, Lee, K K and Doolittle W A 2007 Journal of Vacuum Science & Technology B Microelectronics & Nanometer Structures 25 3
[29] Shao P F, Li S Q, Li Z H, Zhou H, Zhang D Q, Tao T, Yan Y, Xie Z L, Wang K, Chen D J, Liu B, Zheng Y D, Zhang R, Lin T, Wang L and Hirayama H 2022 J. Phys. D: Appl. Phys. 55 364002
[30] Nakajima A, Furukawa Y, Koga S and Yonezu H 2004 J. Cryst. Growth 265 351
[31] Li Z H, Shao P F, Wu Y Z, Shi G J, Tao T, Xie Z L, Chen P, Zhou Y G, Xiu X Q, Chen D J, Liu B, Wang K, Zheng Y D, Zhang R, Lin T, Wang L and Hirayama 2021 Jpn. J. Appl. Phys. 60 075504
[32] Adelmann C, Brault J, Mula G, Daudin B, Lymperakis L and Neugebauer J 2003 Phys. Rev. B 67 165419
[33] Gallinat C S, Koblmueller G, Brown J S and Speck J S 2007 J. Appl. Phys. 102 064907
[34] Liu H, Shao P F, Chen S L, Tao T, Yan Y, Xie Z L, Liu B, Chen D J, Lu H, Zhang R and Wang K 2024 Chin. Phys. B 33 106801
[35] Li Z H, Shao P F, Shi G J, Wu Y Z, Wang Z P, Li S Q, Zhang D Q, Tao T, Xu Q J, Xie Z L, Ye J D, Chen D J, Liu B, Wang K, Zheng Y D and Zhang R 2022 Chin. Phys. B 31 018102
[36] Tsai J K, Lo I, Chuang K L, Tu L W, Huang J H, Hsieh C H and Hsieh K Y 2004 J. Appl. Phys. 95 460
[37] Okumura H, Balakrishnan K, Hamaguchi H, Koizumi T and Yoshida S 1998 J. Crystal Growth 189-190 364
[38] Koblmüller G, Brown J, Averbeck R, Riechert H, Pongratz P and Speck J S 2005 Jpn. J. Appl. Phys. 44 906
[39] Pan J H,Wang X Q, Chen G, Liu S T, Feng L, Xu F J, Tang N and Shen B 2011 Chin. Phys. Lett. 28 068102
[40] Zhao H, Zhang R, Xie Z L, Liu B, Xiu X Q, Lu H, Li L, Liu Z H, Jiang R L and Han P 2008 J. Semicond. 29 1184
[41] Koppe T, Hofsass H and Vetter U 2016 Journal Luminescence 178 267
[42] Tang X, Hossain F,Wongchotigul K and SpencerMG 1998 Appl. Phys. Lett. 72 1501
[43] Youngman R A and Harris J H 1990 Journal American Ceramic Society 73 3238
[44] Keller S, Keller B P, Wu Y F, Heying B, Kapolnek D, Speck S, Mishra U K and DenBaars S P 1996 Appl. Phys. Lett. 68 1525
[1] Gate leakage mechanisms in Al2O3/SiN/AlN/GaN MIS-HEMTs on Si substrates
Hui-Lin Li(李惠琳), Jie-Jie Zhu(祝杰杰), Ling-Jie Qin(秦灵洁), Si-Mei Huang(黄思美), Shi-Yang Li(李诗洋), Bo-Xuan Gao(高渤轩), Qing Zhu(朱青), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2025, 34(4): 047103.
[2] Bimodal growth of Fe islands on graphene
Yi-Sheng Gu(顾翊晟), Qiao-Yan Yu(俞俏滟), Dang Liu(刘荡), Ji-Ce Sun(孙蓟策), Rui-Jun Xi(席瑞骏), Xing-Sen Chen(陈星森), Sha-Sha Xue(薛莎莎), Yi Zhang(章毅), Xian Du(杜宪), Xu-Hui Ning(宁旭辉), Hao Yang(杨浩), Dan-Dan Guan(管丹丹), Xiao-Xue Liu(刘晓雪), Liang Liu(刘亮), Yao-Yi Li(李耀义), Shi-Yong Wang(王世勇), Can-Hua Liu(刘灿华), Hao Zheng(郑浩), and Jin-Feng Jia(贾金锋). Chin. Phys. B, 2024, 33(6): 068104.
[3] Molecular beam epitaxial growth and physical properties of AlN/GaN superlattices with an average 50% Al composition
Siqi Li(李思琦), Pengfei Shao(邵鹏飞), Xiao Liang(梁潇), Songlin Chen(陈松林), Zhenhua Li(李振华), Xujun Su(苏旭军), Tao Tao(陶涛), Zili Xie(谢自力), Bin Liu(刘斌), M. Ajmal Khan, Li Wang, T. T. Lin, Hideki Hirayama, Rong Zhang(张荣), and Ke Wang(王科). Chin. Phys. B, 2024, 33(12): 126801.
[4] Pit density reduction for AlN epilayers grown by molecular beam epitaxy using Al modulation method
Huan Liu(刘欢), Peng-Fei Shao(邵鹏飞), Song-Lin Chen(陈松林), Tao Tao(陶涛), Yu Yan(严羽), Zi-Li Xie(谢自力), Bin Liu(刘斌), Dun-Jun Chen(陈敦军), Hai Lu(陆海), Rong Zhang(张荣), and Ke Wang(王科). Chin. Phys. B, 2024, 33(10): 106801.
[5] High-temperature continuous-wave operation of 1310 nm InAs/GaAs quantum dot lasers
Xiang-Bin Su(苏向斌), Fu-Hui Shao(邵福会), Hui-Ming Hao(郝慧明), Han-Qing Liu(刘汗青),Shu-Lun Li(李叔伦), De-Yan Dai(戴德炎), Xiang-Jun Shang(尚向军), Tian-Fang Wang(王天放),Yu Zhang(张宇), Cheng-Ao Yang(杨成奥), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥),Ying Ding(丁颖), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(9): 098103.
[6] High performance solar-blind deep ultraviolet photodetectors via β-phase (In0.09Ga0.91)2O3 single crystalline film
Bicheng Wang(王必成), Ziying Tang(汤梓荧), Huying Zheng(郑湖颖), Lisheng Wang(王立胜), Yaqi Wang(王亚琪), Runchen Wang(王润晨), Zhiren Qiu(丘志仁), and Hai Zhu(朱海). Chin. Phys. B, 2023, 32(9): 098508.
[7] A first-principles study on remote van der Waals epitaxy through a graphene monolayer on semiconductor substrates
Rui Hou(侯锐) and Shenyuan Yang(杨身园). Chin. Phys. B, 2023, 32(6): 066801.
[8] Critical behavior in the epitaxial growth of two-dimensional tellurium films on SrTiO3 (001) substrates
Haimin Zhang(张海民), Dezhi Song(宋德志), Fuyang Huang(黄扶旸), Jun Zhang(仉君), and Ye-Ping Jiang(蒋烨平). Chin. Phys. B, 2023, 32(6): 066802.
[9] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[10] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[11] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[12] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[13] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[14] Improved RF power performance of InAlN/GaN HEMT by optimizing rapid thermal annealing process for high-performance low-voltage terminal applications
Yuwei Zhou(周雨威), Minhan Mi(宓珉瀚), Pengfei Wang(王鹏飞), Can Gong(龚灿), Yilin Chen(陈怡霖), Zhihong Chen(陈治宏), Jielong Liu(刘捷龙), Mei Yang(杨眉), Meng Zhang(张濛), Qing Zhu(朱青), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(12): 127102.
[15] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
No Suggested Reading articles found!