| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Growth diagram of AlN epilayers grown by plasma-assisted molecular beam epitaxy |
| Huan Liu(刘欢)1, Pengfei Shao(邵鹏飞)1,2,†, Yu Liu(柳裕)1, Qi Yao(姚齐)1, Tao Tao(陶涛)1, Zili Xie(谢自力)1, Dunjun Chen(陈敦军)1, Bin Liu(刘斌)1, Hai Lu(陆海)1,2, Rong Zhang(张荣)1,2,3, and Ke Wang(王科)1,2,‡ |
1 Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; 2 Hefei National Laboratory, Hefei 230088, China; 3 Xiamen University, Xiamen 361005, China |
|
|
|
|
Abstract We have investigated homoepitaxy of AlN films grown by molecular beam epitaxy (MBE) on AlN/sapphire templates. The MBE epitaxy of AlN at the low temperature range, which is suitable for AlGaN, encounters significant challenge in preventing Al droplet and pits, since the migration and desorption rate of Al atom are very low. In contrast, by elevating the growth temperature, such a difficulty can be effectively overcome, and we were able to grow AlN films with much improved surface morphology and obtained step flow growth mode without any Al droplets and pits. The cathodoluminescence spectroscopy indicate that the impurity incorporation and defect generation in the AlN epilayers was suppressed by elevating the growth temperature. A systematic investigation on the influence of Al beam flux and growth temperature in a very wide range on the AlN films has been conducted, and a comprehensive growth diagram of MBE AlN has been obtained.
|
Received: 04 March 2025
Revised: 07 April 2025
Accepted manuscript online: 10 April 2025
|
|
PACS:
|
77.55.hd
|
(AlN)
|
| |
81.15.-z
|
(Methods of deposition of films and coatings; film growth and epitaxy)
|
| |
68.55.J-
|
(Morphology of films)
|
| |
81.10.-h
|
(Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
| Fund: Project supported by the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0303400), the National Key Research and Development Program of China (Grant Nos. 2022YFB3605602 and 2024YFE0205000), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20243037), and the Jiangsu Special Professorship, Collaborative Innovation Center of Solid-state Lighting and Energy-saving Electronics, Postdoctoral Fellowship Program of CPSF (Grant No. GZC20231098). |
Corresponding Authors:
Pengfei Shao, Ke Wang
E-mail: pfshao@nju.edu.cn;kewang@nju.edu.cn
|
Cite this article:
Huan Liu(刘欢), Pengfei Shao(邵鹏飞), Yu Liu(柳裕), Qi Yao(姚齐), Tao Tao(陶涛), Zili Xie(谢自力), Dunjun Chen(陈敦军), Bin Liu(刘斌), Hai Lu(陆海), Rong Zhang(张荣), and Ke Wang(王科) Growth diagram of AlN epilayers grown by plasma-assisted molecular beam epitaxy 2025 Chin. Phys. B 34 077701
|
[1] Taniyasu Y, Kasu M, Makimoto T 2006 Nature 441 325 [2] Li X H, Detchprohm T, Kao T T, et al. 2014 Appl. Phys. Lett. 105 141106 [3] Melo E G and Alayo M I 2015 Photonics and Nanostructures- Fundamentals and Applications 14 35 [4] Wang X P, Fabi G, Chaudhuri R, Hickman A, Asadi M J, Nomoto K, Xing H G, Jena D, Farina M and Hwang J C M 2022 Appl. Phys. Lett. 120 012103 [5] Qi M, Li G, Ganguly S, Zhao P, Yan X, Verma J, Song B, Zhu M, Nomoto K and Xing H G 2017 Appl. Phys. Lett. 110 063501 [6] Collazo R, Mita S, Xie J, Rice A, Tweedie J, Dalmau R and Sitar Z 2011 Phys. Status Solidi C 8 2031 [7] Wang C, Gao X D, Li D D, Chen J J, Chen J F, Dong X M, Wang X D, Huang J, Zeng X H and Xu K 2024 Chin. Phys. B 32 026802 [8] Su Z L, Li Y F, Hu X T, Song Y M, Deng Z, Ma Z G, Du C H, Wang W X, Jia H Q, Jiang Y and Chen H 2024 Chin. Phys. B 33 117801 [9] Sun H D, Mitra S, Subedi R C, Zhang Y, Guo W, Ye J C, Shakfa M K, Ng T K, Ooi B S, Roqan I S, Zhang Z H, Dai J N, Chen C Q and Long S B 2019 Adv. Funct. Mater. 29 1905445 [10] Xu H Q, Jiang J A, Sheikhi M, Chen Z Y, Hoo J, Guo S P, Guo W, Sun H D and Ye J C 2019 Superlattices and Microstructures 129 20 [11] Guo W, Sun H D, Torre B, Li J M, Sheikhi M, Jiang J A, Li H W, Guo S P, Li K H, Lin R H, Giugni A, Di Fabrizio E, Li X H and Ye J C 2018 Adv. Funct. Mater. 28 1802395 [12] Ding Y, Zhou S, Zhuang Z, Sang Y, Yu J, Xu F, Huang J, Xu W, Tao T, Zhi T, Lu H, Huang K, Zhang R and Liu B 2023 Opt. Express 31 24 [13] Zhou S, Liao Z, Sun K, Zhang Z, Qian Y, Liu P, Du P, Jiang J, Lv Z and Qi S 2024 Laser Photon. Rev. 18 2300464 [14] Da B, Herath Mudiyanselage D, Wang D, He Z and Fu H 2024 Appl. Phys. Express 17 104002 [15] Cao H, Nong M, Liu T, Garcia GI, Liu Z, Tang X, Kumar M, Sarkar B, Wu Y and Li X 2025 Trans. Electron Dev. 72 1533 [16] Zhao L, Yang K, Ai Y, Zhang L, Niu X, Lv H and Zhang Y 2018 J. Mater. Sci.: Mater. Elect. 29 13766 [17] Nakarmi M L, Cai B, Lin J Y and Jiang H X 2012 Phys. Status Solidi A 209 126 [18] Wu Y Z, Liu B, Li Z H, Tao T, Xie Z L, Xiu X Q, Chen P, Chen D J, Lu H, Shi Y, Zhang R and Zheng Y D 2019 J. Cryst. Growth 506 30 [19] Rice A, Collazo R, Tweedie J, Dalmau R, Mita S, Xie J and Sitar Z 2010 J. Appl. Phys. 108 043510 [20] Dycus J H, Mirrielees K J, Grimley E D, Kirste R, Mita S, Sitar Z, Collazo R, Irving D L and James M 2017 Microscopy & Microanalysis 23 1444 [21] Cho Y J, Celesta S C, Kevin L, Mingli G, Nomoto K, Masato T, Schowalter L J, Muller D A, Jene D and Huili G X 2020 Appl. Phys. Lett. 116 172106 [22] Heying B, Averbeck R, Chen L F, Haus E, Riechert H and Speck J S 2000 J. Appl. Phys. 88 1855 [23] Li Z H, Shao P F, Shi G J, Wu Y Z, Wang Z P, Li S Q, Zhang D Q, Tao T, Xu Q J, Xie Z L, Ye J D, Chen D J, Liu B, Wang K, Zheng Y D and Zhang R 2022 Chin. Phys. B 31 018102 [24] Kaneko M, Hirai K, Kimoto T and Suda J 2020 Appl. Phys. Express 13 025503 [25] Lee K, Cho Y J, Schowalter L J, Toita M, Xing H G and Jena D 2020 Appl. Phys. Lett. 116 262102 [26] Yamaguchi T, Uematsu N and Araki T 2013 J. Cryst. Growth 377 123 [27] Burnham S D, Henderson W and Doolittle W A 2008 Phys. Status Solidi C 5 1855 [28] Burnham S D, Namkoong G, Lee, K K and Doolittle W A 2007 Journal of Vacuum Science & Technology B Microelectronics & Nanometer Structures 25 3 [29] Shao P F, Li S Q, Li Z H, Zhou H, Zhang D Q, Tao T, Yan Y, Xie Z L, Wang K, Chen D J, Liu B, Zheng Y D, Zhang R, Lin T, Wang L and Hirayama H 2022 J. Phys. D: Appl. Phys. 55 364002 [30] Nakajima A, Furukawa Y, Koga S and Yonezu H 2004 J. Cryst. Growth 265 351 [31] Li Z H, Shao P F, Wu Y Z, Shi G J, Tao T, Xie Z L, Chen P, Zhou Y G, Xiu X Q, Chen D J, Liu B, Wang K, Zheng Y D, Zhang R, Lin T, Wang L and Hirayama 2021 Jpn. J. Appl. Phys. 60 075504 [32] Adelmann C, Brault J, Mula G, Daudin B, Lymperakis L and Neugebauer J 2003 Phys. Rev. B 67 165419 [33] Gallinat C S, Koblmueller G, Brown J S and Speck J S 2007 J. Appl. Phys. 102 064907 [34] Liu H, Shao P F, Chen S L, Tao T, Yan Y, Xie Z L, Liu B, Chen D J, Lu H, Zhang R and Wang K 2024 Chin. Phys. B 33 106801 [35] Li Z H, Shao P F, Shi G J, Wu Y Z, Wang Z P, Li S Q, Zhang D Q, Tao T, Xu Q J, Xie Z L, Ye J D, Chen D J, Liu B, Wang K, Zheng Y D and Zhang R 2022 Chin. Phys. B 31 018102 [36] Tsai J K, Lo I, Chuang K L, Tu L W, Huang J H, Hsieh C H and Hsieh K Y 2004 J. Appl. Phys. 95 460 [37] Okumura H, Balakrishnan K, Hamaguchi H, Koizumi T and Yoshida S 1998 J. Crystal Growth 189-190 364 [38] Koblmüller G, Brown J, Averbeck R, Riechert H, Pongratz P and Speck J S 2005 Jpn. J. Appl. Phys. 44 906 [39] Pan J H,Wang X Q, Chen G, Liu S T, Feng L, Xu F J, Tang N and Shen B 2011 Chin. Phys. Lett. 28 068102 [40] Zhao H, Zhang R, Xie Z L, Liu B, Xiu X Q, Lu H, Li L, Liu Z H, Jiang R L and Han P 2008 J. Semicond. 29 1184 [41] Koppe T, Hofsass H and Vetter U 2016 Journal Luminescence 178 267 [42] Tang X, Hossain F,Wongchotigul K and SpencerMG 1998 Appl. Phys. Lett. 72 1501 [43] Youngman R A and Harris J H 1990 Journal American Ceramic Society 73 3238 [44] Keller S, Keller B P, Wu Y F, Heying B, Kapolnek D, Speck S, Mishra U K and DenBaars S P 1996 Appl. Phys. Lett. 68 1525 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|