CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Molecular beam epitaxial growth and physical properties of AlN/GaN superlattices with an average 50% Al composition |
Siqi Li(李思琦)1, Pengfei Shao(邵鹏飞)1, Xiao Liang(梁潇)1, Songlin Chen(陈松林)1, Zhenhua Li(李振华)1,2, Xujun Su(苏旭军)3, Tao Tao(陶涛)1, Zili Xie(谢自力)1, Bin Liu(刘斌)1, M. Ajmal Khan4, Li Wang4, T. T. Lin4, Hideki Hirayama4, Rong Zhang(张荣)1, and Ke Wang(王科)1,4,† |
1 Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210000, China; 2 School of Opto-Electronic Engineering, Zaozhuang University, Zaozhuang 277160, China; 3 Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215000, China; 4 RIKEN, Saitama, Japan |
|
|
Abstract We report molecular beam epitaxial growth and electrical and ultraviolet light emitting properties of (AlN)$m$/(GaN)$n$ superlattices (SLs), where $m$ and $n$ represent the numbers of monolayers. Clear satellite peaks observed in XRD 2$\theta $-$\omega $ scans and TEM images evidence the formation of clear periodicity and atomically sharp interfaces. For (AlN)$m$/(GaN)$n$ SLs with an average Al composition of 50%, we have obtained an electron density up to 4.48$\times10^{19}$ cm$^{-3}$ and a resistivity of 0.002 $\Omega\cdot$cm, and a hole density of 1.83$\times10^{18}$ cm$^{-3}$ with a resistivity of 3.722 $\Omega \cdot$cm, both at room temperature. Furthermore, the (AlN)$m$/(GaN)$n$ SLs exhibit a blue shift for their photoluminescence peaks, from 403 nm to 318 nm as GaN is reduced from $n=11$ to $n=4$ MLs, reaching the challenging UVB wavelength range. The results demonstrate that the (AlN)$m$/(GaN)$n$ SLs have the potential to enhance the conductivity and avoid the usual random alloy scattering of the high-Al-composition ternary AlGaN, making them promising functional components in both UVB emitter and AlGaN channel high electron mobility transistor applications.
|
Received: 27 July 2024
Revised: 23 September 2024
Accepted manuscript online: 09 October 2024
|
PACS:
|
68.65.Cd
|
(Superlattices)
|
|
77.55.Px
|
(Epitaxial and superlattice films)
|
|
81.05.Ea
|
(III-V semiconductors)
|
|
74.62.Dh
|
(Effects of crystal defects, doping and substitution)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFB3605600), the National Natural Science Foundation of China (Grant No. 61974065), the Key R&D Project of Jiangsu Province, China (Grant Nos. BE2020004-3 and BE2021026), Postdoctoral Fellowship Program of CPSF (Grant No. GZC20231098), the Jiangsu Special Professorship, Collaborative Innovation Center of Solid State Lighting and Energy-saving Electronics. |
Corresponding Authors:
Ke Wang
E-mail: kewang@nju.edu.cn
|
Cite this article:
Siqi Li(李思琦), Pengfei Shao(邵鹏飞), Xiao Liang(梁潇), Songlin Chen(陈松林), Zhenhua Li(李振华), Xujun Su(苏旭军), Tao Tao(陶涛), Zili Xie(谢自力), Bin Liu(刘斌), M. Ajmal Khan, Li Wang, T. T. Lin, Hideki Hirayama, Rong Zhang(张荣), and Ke Wang(王科) Molecular beam epitaxial growth and physical properties of AlN/GaN superlattices with an average 50% Al composition 2024 Chin. Phys. B 33 126801
|
[1] Kneissl M, Seong T Y, Han J and Amano H 2019 Nat. Photon. 13 233 [2] Kneissl M and Rass J 2016 Springer Series in Material Science (Vol. 227) (Switzerland: Springer International Publishing) pp. 115- 215 [3] Arulkumaran S, Vicknesh S, Ng G, Liu Z H, Bryan M and Lee C H 2010 Electrochem. Solid-State Lett. 13 H169 [4] Xie J, Mita S, Bryan Z, Guo W, Hussey L, Moody B, Schlesser R, Kirste R, Gerhold M, Collazo R and Sitar Z 2013 Appl. Phys. Lett. 102 171102 [5] Lachab M, Sun W, Jain R, Dobrinsky A, Gaevski M, Rumyantsev S, Shur M and Shatalov M 2017 Appl. Phys. Express 10 012702 [6] Khan M A, Yamada Y and Hirayama H 2024 Phys. Status Solidi A 13 2300581 [7] Khan M A, Itokazu Y, Maeda N, Jo M, Yamada Y and Hirayama H 2020 ACS Appl. Electron. Mater. 2 1892 [8] Fischer A J, Allerman A A, Crawford M H, Bogart K H A, Lee S R, Kaplar R J, Chow W W, Kurtz S R, Fullmer K W and Figiel J J 2004 Appl. Phys. Lett. 84 3394 [9] Bryan I, Bryan Z, Mita S, Rice A, Hussey L, Shelton C, Tweedie J, Maria J, Collazo R and Sitar Z 2016 J. Cryst. Growth. 451 65 [10] Tao H C, Xu S R, Zhang J C, Su H K, Gao Y, Zhang Y C, Zhou H and Hao Y 2023 Opt. Express 13 20850 [11] Tanaka S, Teramura S, Shimokawa M, Yamada K, Omori T, Iwayama S, Sato K, Miyake H, Iwaya M, Takeuchi T, Kamiyama S and Akasaki I 2021 Appl. Phys. Express 14 055505 [12] Kamarundzaman A, Bakar A S, Azman A, Omar A Z, Talik N A, Supangat A and Abd Majid W H 2021 Sci. Rep. 11 9724 [13] Stanchu H V, Kuchuk A V, Lytvyn P M, Mazur Y I, Maidaniuk Y, Benamara M, Li S B, Kryvyi S, Kladko V P, Belyaev A E, Wang Zh M and Salamo G J 2018 Mater. Des. 157 141 [14] NanjoT, Takeuchi M, Suita M, Oishi T, Abe Y, Tokuda Y and Aoyagi Y 2008 Appl. Phys. Lett. 92 263502 [15] Coltrin M E, Baca A G and Kaplar R J 2017 ECS J. Solid State Sci. Technol. 6 S3114 [16] MaedaR, Ueno K, Kobayashi A and Fujioka H 2022 Appl. Phys. Express 15 031002 [17] Baca A G, Klein B A, Wendt J R, Lepkowski S M, Nordquist C D, Armstrong A M, Allerman A A, Douglas E A and Kaplar R J 2019 IEEE Electron Device Lett. 40 17 [18] Singhal J, Chaudhuri R, Hickman A, Protasenko V, Xing H G and Jena D 2022 APL Mater. 10 111120 [19] Khachariya D, Mita S, Reddy P, Dangi S, Dycus J H, Bagheri P, Breckenridge M H, Sengupta R, Rathkanthiwar S, Kirste R, Kohn E, Sitar Z, Collazo R and Pavlidis S 2022 Appl. Phys. Lett. 120 172106 [20] Khan M A, Kuznia J N, Olson D T, George T and PikeWT 1993 Appl. Phys. Lett. 63 3470 [21] Islam S M, Protasenko V, Lee K, Rouvimov S, Verma J, Xing H and Jena D 2017 Appl. Phys. Lett. 111 091104 [22] Gao N, Feng X, Lu S Q, Lin W, Zhuang Q Q, Chen H Y, Huang K, Li S P and Kang J Y 2019 Cryst. Growth Des. 19 1720 [23] Jmerik V, Toropov A, Davydov V and Ivanov S 2021 Phys Status Solidi Rapid Res. Lett. 15 2100242 [24] Sun W, Tan C K and Tansu N 2017 Sci. Rep. 7 11826 [25] Nikishin S A, Holtz M and Temkin H 2005 Jpn. J. Appl. Phys. 44 7221 [26] Kipshidze G, Kuryatkov V, Zhu K, Borisov B, Holtz M, Nikishin S and Temkin H 2003 J. Appl. Phys. 93 1363 [27] Wille A, Yacoub H, Debald A, Kalisch H and Vescan A 2015 J. Electron. 44 1263 [28] Itakura H, Nomura T, Arita N, Okada N, Wetzel C M, Chow T P and Tadatomo K 2020 AIP Advances 10 025133 [29] Nikishin S A 2018 Appl. Sci. 8 2362 [30] Wang J M, Wang M X, Xu F J, Liu B Y, Lang J, Zhang N, Kang X N, Qin Z X, Yang X L, Wang X Q, Ge W K and Shen B 2022 Light Sci. Appl. 11 71 [31] Shao P F, Fan X, Li S Q, Chen S L, Zhou H, Liu H, Guo H, Xu W. Z, Tao T, Xie Z L, Lu H,Wang K, Liu B, Chen D J, Zheng Y D and Zhang R 2023 Appl. Phys. Lett. 122 142102 [32] Shao P F, Li S Q, Zhou H, Li Z H, Zhang D Q, Tao T, Yan Y, Xie Z L, Wang K, Liu B, Chen D J, Zheng Y D, Zhang R, Lin T, Wang L and Hirayama H 2022 J. Phys. D: Appl. Phys. 55 364002 [33] Li S Q, Liang X, Shao P F, Chen S L, Li Z H, Su X J, Tao T, Xie Z L, Khan M A, Wang L, Lin T T, Hirayama H, Liu B, Chen D J, Wang K and Zhang R 2024 Appl. Phys. Lett. 125 112102 [34] Li Z H, Shao P F, Wu Y Z, Shi G J, Tao T, Xie Z L, Chen P, Zhou Y G, Xiu X Q, Chen D J, Liu B, Wang K, Zheng Y D, Zhang R, Lin T, Wang L and Hirayama H 2021 Jpn. J. Appl. Phys. 60 075504 [35] Li Z H, Shao P F, Shi G J, Wu Y Z, Wang Z P, Li S Q, Zhang D Q, Tao T, Xu Q J, Xie Z L, Ye J D, Chen D J, Liu B, Wang K, Zheng Y D and Zhang R 2022 Chin. Phys. B 31 018102 [36] Smorchkova I P, Haus E, Heying B, Kozodoy P, Fini P, Ibbetson J P, Keller S, DenBaars S P, Speck J S and Mishra U K 2000 Appl. Phys. Lett. 76 718 [37] Kim K C, Schmidt M C, Sato H, Wu F, Fellows N, Saito M, Fujito K, Speck J S, Nakamura S and DenBaars S P 2007 Phys. Stat. Sol. (RRL) 1 125 [38] Ivanov S V, Nechaev D V, Sitnikova A A, Ratnikov V V, Yagovkina M A, Rzheutskii N V, Lutsenko E V and Jmerik V N 2014 Semicond. Sci. Technol. 29 084008 [39] Zhang H P, Xue J S, Fu Y R, Yang M, Zhang Y C, Duan X L, Qiang W T, Li L X, Sun Z P, Ma X H, Zhang J C and Hao Y 2020 J. Cryst. Growth. 535 125539 [40] Sun W, Tan C K and Tansu N 2017 Sci. Rep. 7 6671 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|