Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 126801    DOI: 10.1088/1674-1056/ad84cc
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Molecular beam epitaxial growth and physical properties of AlN/GaN superlattices with an average 50% Al composition

Siqi Li(李思琦)1, Pengfei Shao(邵鹏飞)1, Xiao Liang(梁潇)1, Songlin Chen(陈松林)1, Zhenhua Li(李振华)1,2, Xujun Su(苏旭军)3, Tao Tao(陶涛)1, Zili Xie(谢自力)1, Bin Liu(刘斌)1, M. Ajmal Khan4, Li Wang4, T. T. Lin4, Hideki Hirayama4, Rong Zhang(张荣)1, and Ke Wang(王科)1,4,†
1 Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210000, China;
2 School of Opto-Electronic Engineering, Zaozhuang University, Zaozhuang 277160, China;
3 Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215000, China;
4 RIKEN, Saitama, Japan
Abstract  We report molecular beam epitaxial growth and electrical and ultraviolet light emitting properties of (AlN)$m$/(GaN)$n$ superlattices (SLs), where $m$ and $n$ represent the numbers of monolayers. Clear satellite peaks observed in XRD 2$\theta $-$\omega $ scans and TEM images evidence the formation of clear periodicity and atomically sharp interfaces. For (AlN)$m$/(GaN)$n$ SLs with an average Al composition of 50%, we have obtained an electron density up to 4.48$\times10^{19}$ cm$^{-3}$ and a resistivity of 0.002 $\Omega\cdot$cm, and a hole density of 1.83$\times10^{18}$ cm$^{-3}$ with a resistivity of 3.722 $\Omega \cdot$cm, both at room temperature. Furthermore, the (AlN)$m$/(GaN)$n$ SLs exhibit a blue shift for their photoluminescence peaks, from 403 nm to 318 nm as GaN is reduced from $n=11$ to $n=4$ MLs, reaching the challenging UVB wavelength range. The results demonstrate that the (AlN)$m$/(GaN)$n$ SLs have the potential to enhance the conductivity and avoid the usual random alloy scattering of the high-Al-composition ternary AlGaN, making them promising functional components in both UVB emitter and AlGaN channel high electron mobility transistor applications.
Keywords:  AlGaN      superlattices (SLs)      molecular beam epitaxy (MBE)  
Received:  27 July 2024      Revised:  23 September 2024      Accepted manuscript online:  09 October 2024
PACS:  68.65.Cd (Superlattices)  
  77.55.Px (Epitaxial and superlattice films)  
  81.05.Ea (III-V semiconductors)  
  74.62.Dh (Effects of crystal defects, doping and substitution)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFB3605600), the National Natural Science Foundation of China (Grant No. 61974065), the Key R&D Project of Jiangsu Province, China (Grant Nos. BE2020004-3 and BE2021026), Postdoctoral Fellowship Program of CPSF (Grant No. GZC20231098), the Jiangsu Special Professorship, Collaborative Innovation Center of Solid State Lighting and Energy-saving Electronics.
Corresponding Authors:  Ke Wang     E-mail:  kewang@nju.edu.cn

Cite this article: 

Siqi Li(李思琦), Pengfei Shao(邵鹏飞), Xiao Liang(梁潇), Songlin Chen(陈松林), Zhenhua Li(李振华), Xujun Su(苏旭军), Tao Tao(陶涛), Zili Xie(谢自力), Bin Liu(刘斌), M. Ajmal Khan, Li Wang, T. T. Lin, Hideki Hirayama, Rong Zhang(张荣), and Ke Wang(王科) Molecular beam epitaxial growth and physical properties of AlN/GaN superlattices with an average 50% Al composition 2024 Chin. Phys. B 33 126801

[1] Kneissl M, Seong T Y, Han J and Amano H 2019 Nat. Photon. 13 233
[2] Kneissl M and Rass J 2016 Springer Series in Material Science (Vol. 227) (Switzerland: Springer International Publishing) pp. 115- 215
[3] Arulkumaran S, Vicknesh S, Ng G, Liu Z H, Bryan M and Lee C H 2010 Electrochem. Solid-State Lett. 13 H169
[4] Xie J, Mita S, Bryan Z, Guo W, Hussey L, Moody B, Schlesser R, Kirste R, Gerhold M, Collazo R and Sitar Z 2013 Appl. Phys. Lett. 102 171102
[5] Lachab M, Sun W, Jain R, Dobrinsky A, Gaevski M, Rumyantsev S, Shur M and Shatalov M 2017 Appl. Phys. Express 10 012702
[6] Khan M A, Yamada Y and Hirayama H 2024 Phys. Status Solidi A 13 2300581
[7] Khan M A, Itokazu Y, Maeda N, Jo M, Yamada Y and Hirayama H 2020 ACS Appl. Electron. Mater. 2 1892
[8] Fischer A J, Allerman A A, Crawford M H, Bogart K H A, Lee S R, Kaplar R J, Chow W W, Kurtz S R, Fullmer K W and Figiel J J 2004 Appl. Phys. Lett. 84 3394
[9] Bryan I, Bryan Z, Mita S, Rice A, Hussey L, Shelton C, Tweedie J, Maria J, Collazo R and Sitar Z 2016 J. Cryst. Growth. 451 65
[10] Tao H C, Xu S R, Zhang J C, Su H K, Gao Y, Zhang Y C, Zhou H and Hao Y 2023 Opt. Express 13 20850
[11] Tanaka S, Teramura S, Shimokawa M, Yamada K, Omori T, Iwayama S, Sato K, Miyake H, Iwaya M, Takeuchi T, Kamiyama S and Akasaki I 2021 Appl. Phys. Express 14 055505
[12] Kamarundzaman A, Bakar A S, Azman A, Omar A Z, Talik N A, Supangat A and Abd Majid W H 2021 Sci. Rep. 11 9724
[13] Stanchu H V, Kuchuk A V, Lytvyn P M, Mazur Y I, Maidaniuk Y, Benamara M, Li S B, Kryvyi S, Kladko V P, Belyaev A E, Wang Zh M and Salamo G J 2018 Mater. Des. 157 141
[14] NanjoT, Takeuchi M, Suita M, Oishi T, Abe Y, Tokuda Y and Aoyagi Y 2008 Appl. Phys. Lett. 92 263502
[15] Coltrin M E, Baca A G and Kaplar R J 2017 ECS J. Solid State Sci. Technol. 6 S3114
[16] MaedaR, Ueno K, Kobayashi A and Fujioka H 2022 Appl. Phys. Express 15 031002
[17] Baca A G, Klein B A, Wendt J R, Lepkowski S M, Nordquist C D, Armstrong A M, Allerman A A, Douglas E A and Kaplar R J 2019 IEEE Electron Device Lett. 40 17
[18] Singhal J, Chaudhuri R, Hickman A, Protasenko V, Xing H G and Jena D 2022 APL Mater. 10 111120
[19] Khachariya D, Mita S, Reddy P, Dangi S, Dycus J H, Bagheri P, Breckenridge M H, Sengupta R, Rathkanthiwar S, Kirste R, Kohn E, Sitar Z, Collazo R and Pavlidis S 2022 Appl. Phys. Lett. 120 172106
[20] Khan M A, Kuznia J N, Olson D T, George T and Pike W T 1993 Appl. Phys. Lett. 63 3470
[21] Islam S M, Protasenko V, Lee K, Rouvimov S, Verma J, Xing H and Jena D 2017 Appl. Phys. Lett. 111 091104
[22] Gao N, Feng X, Lu S Q, Lin W, Zhuang Q Q, Chen H Y, Huang K, Li S P and Kang J Y 2019 Cryst. Growth Des. 19 1720
[23] Jmerik V, Toropov A, Davydov V and Ivanov S 2021 Phys Status Solidi Rapid Res. Lett. 15 2100242
[24] Sun W, Tan C K and Tansu N 2017 Sci. Rep. 7 11826
[25] Nikishin S A, Holtz M and Temkin H 2005 Jpn. J. Appl. Phys. 44 7221
[26] Kipshidze G, Kuryatkov V, Zhu K, Borisov B, Holtz M, Nikishin S and Temkin H 2003 J. Appl. Phys. 93 1363
[27] Wille A, Yacoub H, Debald A, Kalisch H and Vescan A 2015 J. Electron. 44 1263
[28] Itakura H, Nomura T, Arita N, Okada N, Wetzel C M, Chow T P and Tadatomo K 2020 AIP Advances 10 025133
[29] Nikishin S A 2018 Appl. Sci. 8 2362
[30] Wang J M, Wang M X, Xu F J, Liu B Y, Lang J, Zhang N, Kang X N, Qin Z X, Yang X L, Wang X Q, Ge W K and Shen B 2022 Light Sci. Appl. 11 71
[31] Shao P F, Fan X, Li S Q, Chen S L, Zhou H, Liu H, Guo H, Xu W. Z, Tao T, Xie Z L, Lu H, Wang K, Liu B, Chen D J, Zheng Y D and Zhang R 2023 Appl. Phys. Lett. 122 142102
[32] Shao P F, Li S Q, Zhou H, Li Z H, Zhang D Q, Tao T, Yan Y, Xie Z L, Wang K, Liu B, Chen D J, Zheng Y D, Zhang R, Lin T, Wang L and Hirayama H 2022 J. Phys. D: Appl. Phys. 55 364002
[33] Li S Q, Liang X, Shao P F, Chen S L, Li Z H, Su X J, Tao T, Xie Z L, Khan M A, Wang L, Lin T T, Hirayama H, Liu B, Chen D J, Wang K and Zhang R 2024 Appl. Phys. Lett. 125 112102
[34] Li Z H, Shao P F, Wu Y Z, Shi G J, Tao T, Xie Z L, Chen P, Zhou Y G, Xiu X Q, Chen D J, Liu B, Wang K, Zheng Y D, Zhang R, Lin T, Wang L and Hirayama H 2021 Jpn. J. Appl. Phys. 60 075504
[35] Li Z H, Shao P F, Shi G J, Wu Y Z, Wang Z P, Li S Q, Zhang D Q, Tao T, Xu Q J, Xie Z L, Ye J D, Chen D J, Liu B, Wang K, Zheng Y D and Zhang R 2022 Chin. Phys. B 31 018102
[36] Smorchkova I P, Haus E, Heying B, Kozodoy P, Fini P, Ibbetson J P, Keller S, DenBaars S P, Speck J S and Mishra U K 2000 Appl. Phys. Lett. 76 718
[37] Kim K C, Schmidt M C, Sato H, Wu F, Fellows N, Saito M, Fujito K, Speck J S, Nakamura S and DenBaars S P 2007 Phys. Stat. Sol. (RRL) 1 125
[38] Ivanov S V, Nechaev D V, Sitnikova A A, Ratnikov V V, Yagovkina M A, Rzheutskii N V, Lutsenko E V and Jmerik V N 2014 Semicond. Sci. Technol. 29 084008
[39] Zhang H P, Xue J S, Fu Y R, Yang M, Zhang Y C, Duan X L, Qiang W T, Li L X, Sun Z P, Ma X H, Zhang J C and Hao Y 2020 J. Cryst. Growth. 535 125539
[40] Sun W, Tan C K and Tansu N 2017 Sci. Rep. 7 6671
[1] High-temperature continuous-wave operation of 1310 nm InAs/GaAs quantum dot lasers
Xiang-Bin Su(苏向斌), Fu-Hui Shao(邵福会), Hui-Ming Hao(郝慧明), Han-Qing Liu(刘汗青),Shu-Lun Li(李叔伦), De-Yan Dai(戴德炎), Xiang-Jun Shang(尚向军), Tian-Fang Wang(王天放),Yu Zhang(张宇), Cheng-Ao Yang(杨成奥), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥),Ying Ding(丁颖), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(9): 098103.
[2] Novel double channel reverse conducting GaN HEMT with an integrated MOS-channel diode
Xintong Xie(谢欣桐), Cheng Zhang(张成), Zhijia Zhao(赵智家), Jie Wei(魏杰),Xiaorong Luo(罗小蓉), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(9): 098506.
[3] Proton irradiation-induced dynamic characteristics on high performance GaN/AlGaN/GaN Schottky barrier diodes
Tao Zhang(张涛), Ruo-Han Li(李若晗), Kai Su(苏凯), Hua-Ke Su(苏华科), Yue-Guang Lv(吕跃广), Sheng-Rui Xu(许晟瑞), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(8): 087301.
[4] Realization of high-efficiency AlGaN deep ultraviolet light-emitting diodes with polarization-induced doping of the p-AlGaN hole injection layer
Yi-Wei Cao(曹一伟), Quan-Jiang Lv(吕全江), Tian-Peng Yang(杨天鹏), Ting-Ting Mi(米亭亭),Xiao-Wen Wang(王小文), Wei Liu(刘伟), and Jun-Lin Liu(刘军林). Chin. Phys. B, 2023, 32(5): 058503.
[5] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[6] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[7] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[8] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[9] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[10] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[11] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[12] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[13] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[14] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[15] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
No Suggested Reading articles found!