Abstract This study investigates the gate leakage mechanisms of AlN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs) fabricated on silicon substrate with AlO/SiN as stacked gate dielectrics, analyzing behaviors across high and low temperature conditions. In the high-temperature reverse bias region ( K, V), Poole-Frenkel emission (PFE) dominates at low electric fields, while trap-assisted tunneling (TAT) is the primary mechanism at medium to high electric fields. The shift from PFE to TAT as the dominant conduction mechanism is due to the increased tunneling effect of electrons as the electric field strength rises. Additionally, TAT is found to be the main gate leakage mechanism under low-temperature reverse bias ( K, V). At lower temperatures, the reduction in electron energy causes the emission process to rely more on electric field forces. Furthermore, under forward bias conditions at both high and low temperatures (, ), conduction is primarily dominated by defect-assisted tunneling (DAT).
Hui-Lin Li(李惠琳), Jie-Jie Zhu(祝杰杰), Ling-Jie Qin(秦灵洁), Si-Mei Huang(黄思美), Shi-Yang Li(李诗洋), Bo-Xuan Gao(高渤轩), Qing Zhu(朱青), and Xiao-Hua Ma(马晓华) Gate leakage mechanisms in Al2O3/SiN/AlN/GaN MIS-HEMTs on Si substrates 2025 Chin. Phys. B 34 047103
[1] Zimmermann T, Deen D, Cao Y, Simon J, Fay P, Jena D and Xing H G 2008 IEEE Electron Dev. Lett. 29 661 [2] Haifeng S, Andreas R A, Hansruedi B, Eric F, JeanF C and Marcus G 2010 IEEE Electron Dev. Lett. 31 957 [3] Jiang M, Zhang L, Zhou X, Li C, Zhang X, Zhao D, Chen T, Xu K, Yang F, Shi W, Dong Z, Zeng Z and Zhang B 2024 Appl. Surf. Sci. 659 159902 [4] Xie H, Liu Z, HuW, Gao Y, Tan H K, Lee K E, Guo Y X, Zhang J, Hao Y and Ng G I 2022 Appl. Phys. Express 15 016503 [5] Mahfuz M, Reza F, Liu X, Chu R, Lang M, Snure M, Wang X and Jin M 2024 Appl. Phys. Lett. 124 112104 [6] Zhang L Q and Wang P F 2018 Jpn. J. Appl. Phys. 57 096502 [7] Gu W P, Duan H T, Ni J Y, Hao Y, Zhang J C, Feng Q and Ma X H 2009 Chin. Phys. B 18 1601 [8] Li H Z, Mi M H, Zhou Y W, Gong C and Ma X H 2023 Space Electronic Technology 20 58 [9] Xing S K 2023 Study on surface passivation of HEMT devices based on MBE grown AlN/GaN heterojunction, MS dissertation (Xian: Xidian University) (in Chinese) [10] Aoki H, Sakairi H, Kuroda N, Nakamura Y, Chikamatsu K and Nakahara K 2018 IEEE Applied Power Electronics Conference and Exposition, March, 2018, San Antonio, p. 2842 [11] Chanchal C, Visvkarma A K, Malik A, Laishram R, Rawal D S and Saxena M 2022 IEEE VLSI Device Circuit and System, February, 2022, Kolkata, India, p. 265 [12] Debnath A, DasGupta N and DasGupta A 2020 IEEE Trans. Electron Dev. 67 834 [13] Debnath A, Sarkar S, Pandurang K R, DasGupta N and DasGupta A 2021 IEEE Trans. Electron Dev. 68 425 [14] Dutta G, DasGupta N and DasGupta A 2017 IEEE Trans. Electron Dev. 64 3609 [15] Hua M, Liu C, Yang S, Liu S, Fu K, Dong Z, Cai Y, Zhang B and Chen K J 2015 IEEE Trans. Electron Dev. 62 3215 [16] Jiang X, Li C H, Yang S X, Liang J H, Lai L K, Dong Q Y, Huang W, Liu X Y and Luo W J 2023 Chin. Phys. B 32 037201 [17] Jiang Z, Wang X, Zhao J, Chen J, Tang J, Wang C, Chen H, Huang S, Chen X and Hua M 2023 IEEE Electron Dev. Lett. 44 1612 [18] Liu S, Zhuang Y, Li H, Xie Q, Wang Y, Xie H, Ranjan K and Ng G I 2024 Appl. Phys. Lett. 125 23504 [19] Zhang S, Liu X, Wei K, Huang S, Chen X, Zhang Y, Zheng Y, Liu G, Yuan T, Wang X, Yin H, Yao Y and Niu J 2021 IEEE Trans. Electron Dev. 68 49 [20] Qin L, Zhu J, Liu S, Guo J, Zhang B, Zhou Y, Qiu T and Ma X 2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications, November, Guangzhou, China, p. 1 [21] Matus M, Drobny J, Vadovsky J, Kosa A, Benko P, Kovac J, Delage S L and Stuchlikova L 2020 International Conference on Advanced Semiconductor Devices And Microsystems, October, Smolenice, Slovakia, p. 119 [22] Dutta G, Turuvekere S, Karumuri N, DasGupta N and DasGupta A 2014 IEEE Electron Dev. Lett. 35 1085 [23] Wang A, Zeng L and Wang W 2017 ECS J. Solid State Sci. Technol. 6 S3025 [24] Zhu J J, Ma X H, Hou B, ChenWWand Hao Y 2014 Appl. Phys. Lett. 104 153510 [25] Wu P Y, Tsai X Y, Chang T C, Tsai T M and Sze S M 2023 International Conference on Microelectronic Test Structure, March, Tokyo, Japan, p. 1 [26] Eisner S R and Senesky D G 2023 Appl. Phys. Lett. 123 152101 [27] Turuvekere S, Karumuri N, Rahman A A, Bhattacharya A, DasGupta A and DasGupta N 2013 IEEE Trans. Electron Dev. 60 3157 [28] Swain R, Jena K and Lenka T R 2016 IEEE Trans. Electron Dev. 63 2346 [29] Liang J X, Lai L K, Zhou Z K, Zhang J, Zhang J, Xu J, Zhang Y P, Liu X Y and Luo W J 2019 Solid-State Electronics 160 107622 [30] Debnath A, Turuvekre S, DasGupta N and DasGupta A 2018 IEEE International Conference on Emerging Electronics, November, Bengaluru, India, p. 1
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.