Enhancing p-d hybridization via synergistic regulation of spatial and energetic orbital overlaps in Ba-doped LaNiO3 epitaxial films for oxygen evolution activity
Yingjia Li(李莹嘉), Xiang Xu(徐翔), Xiaoyu Qiu(邱晓宇), Jie Tu(涂杰), Zijian Chen(陈子健), Yujie Zhou(周雨洁), Zhao Guan(关赵), Youyuan Zhang(张友圆), Wen-Yi Tong(童文旖)†, Shaohui Xu(徐少辉), Ni Zhong(钟妮), Pinghua Xiang(向平华), Chun-Gang Duan(段纯刚), and Binbin Chen(陈斌斌)‡
Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai 200241, China
Abstract The hybridization between oxygen 2p and transition-metal 3d states largely determines the electronic structure near the Fermi level and related functionalities of transition-metal oxides (TMOs). Considerable efforts have been made to manipulate the p-d hybridization in TMOs by tailoring the spatial orbital overlap via structural engineering. Here, we demonstrate enhanced p-d hybridization in Ba-doped LaNiO epitaxial films by simultaneously modifying both the spatial and energetic overlaps between the O-2p and Ni-3d orbitals. Combining x-ray absorption spectroscopy and first-principles calculations, we reveal that the enhanced hybridization stems from the synergistic effects of a reduced charge-transfer energy due to hole injection and an increased spatial orbital overlap due to straightening of Ni-O-Ni bonds. We further show that the enhanced p-d hybridization can be utilized to promote the oxygen evolution activity of LaNiO. This work sheds new insights into the fine-tuning of the electronic structures of TMOs for enhanced functionalities.
Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1402902), the National Natural Science Foundation of China (Grant Nos. 12374179, 12074119, 12374145, 051B22001, 12104157, 12134003, and 12304218), and the Shanghai Pujiang Program (Grant No. 23PJ1402200).
Yingjia Li(李莹嘉), Xiang Xu(徐翔), Xiaoyu Qiu(邱晓宇), Jie Tu(涂杰), Zijian Chen(陈子健), Yujie Zhou(周雨洁), Zhao Guan(关赵), Youyuan Zhang(张友圆), Wen-Yi Tong(童文旖), Shaohui Xu(徐少辉), Ni Zhong(钟妮), Pinghua Xiang(向平华), Chun-Gang Duan(段纯刚), and Binbin Chen(陈斌斌) Enhancing p-d hybridization via synergistic regulation of spatial and energetic orbital overlaps in Ba-doped LaNiO3 epitaxial films for oxygen evolution activity 2025 Chin. Phys. B 34 057101
[1] Inoue I H, Goto O, Makino H, Hussey N E and Ishikawa M 1998 Phys. Rev. B 58 4372 [2] Li Y, Cai X, Sun W, Yang J, Guo W, Gu Z, Zhu Y and Nie Y 2023 Chin. Phys. Lett. 40 076801 [3] Hwang H Y, Cheong S W, Radaelli P G, Marezio M and Batlogg B 1995 Phys. Rev. Lett. 75 914 [4] Li J, Chen Y, Gong N, Huang X, Yang Z andWeng Y 2024 Chin. Phys. B 33 017502 [5] Cohen R E 1992 Nature 358 136 [6] Suntivich J, Gasteiger H A, Yabuuchi N, Nakanishi H, Goodenough J B and Shao-Horn Y 2011 Nature Chemistry 3 546 [7] Goldschmidt V M 1926 Naturwissenschaften 14 477 [8] Schlom D G, Chen L Q, Fennie C J, Gopalan V, Muller D A, Pan X, Ramesh R and Uecker R 2014 MRS Bulletin 39 118 [9] Fan Y Y, Wang J, Hu F X, Li B H, Geng A C, Yin Z, Zhang C, Zhou H B, Wang M Q, Yu Z B and Shen B G 2023 Chin. Phys. B 32 087504 [10] Vailionis A, Boschker H, Siemons W, Houwman E P, Blank D H A, Rijnders G and Koster G 2011 Phys. Rev. B 83 064101 [11] Rondinelli J M, May S J and Freeland J W 2012 MRS Bulletin 37 261 [12] Moon E J, Balachandran P V, Kirby B J, Keavney D J, Sichel-Tissot R J, Schlepütz C M, Karapetrova E, Cheng X M, Rondinelli JMand May S J 2014 Nano Lett. 14 2509 [13] Liao Z, Huijben M, Zhong Z, Gauquelin N, Macke S, Green R J, Van Aert S, Verbeeck J, Van Tendeloo G, Held K, Sawatzky G A, Koster G and Rijnders G 2016 Nat. Mater. 15 425 [14] Chen B, Gauquelin N, Green R J, Lee J H, Piamonteze C, Spreitzer M, Jannis D, Verbeeck J, Bibes M, Huijben M, Rijnders G and Koster G 2021 Nano Lett. 21 1295 [15] Grisolia M N, Varignon J, Sanchez-Santolino G, Arora A, Valencia S, Varela M, Abrudan R, Weschke E, Schierle E, Rault J E, Rueff J P, Barthélémy A, Santamaria J and Bibes M 2016 Nat. Phys. 12 484 [16] Bisogni V, Catalano S, Green R J, Gibert M, Scherwitzl R, Huang Y, Strocov V N, Zubko P, Balandeh S, Triscone J M, Sawatzky G and Schmitt T 2016 Nat. Commun. 7 13017 [17] Suntivich J, HongWT, Lee Y L, Rondinelli J M, YangW, Goodenough J B, Dabrowski B, Freeland J W and Shao-Horn Y 2014 The Journal of Physical Chemistry C 118 1856 [18] Bocquet A E, Mizokawa T, Saitoh T, Namatame H and Fujimori A 1992 Phys. Rev. B 46 3771 [19] Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y and Hwang H Y 2019 Nature 572 624 [20] Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P,Wang B, Cheng J, Yao D X, Zhang G M and Wang M 2023 Nature 621 493 [21] Zhu Y, Peng D, Zhang E, Pan B, Chen X, Chen L, Ren H, Liu F, Hao Y, Li N, Xing Z, Lan F, Han J, Wang J, Jia D, Wo H, Gu Y, Gu Y, Ji L, Wang W, Gou H, Shen Y, Ying T, Chen X, Yang W, Cao H, Zheng C, Zeng Q, Guo J G and Zhao J 2024 Nature 631 531 [22] Catalan G 2008 Phase Transitions 81 729 [23] Catalano S, Gibert M, Fowlie J,Í ñiguez J, Triscone J M and Kreisel J 2018 Reports on Progress in Physics 81 046501 [24] Torrance J B, Lacorre P, Nazzal A I, Ansaldo E J and Niedermayer C 1992 Phys. Rev. B 45 8209 [25] Blöchl P E 1994 Phys. Rev. B 50 17953 [26] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [28] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505 [29] Golalikhani M, Lei Q, Chandrasena R U, Kasaei L, Park H, Bai J, Orgiani P, Ciston J, Sterbinsky G E, Arena D A, Shafer P, Arenholz E, Davidson B A, Millis A J, Gray A X and Xi X X 2018 Nat. Commun. 9 2206 [30] Köhler L and Kresse G 2004 Phys. Rev. B 70 165405 [31] Pizzi G, Vitale V, Arita R, Blügel S, Freimuth F, Géranton G, Gibertini M, Gresch D, Johnson C, Koretsune T, Ibañez-Azpiroz J, Lee H, Lihm J M, Marchand D, Marrazzo A, Mokrousov Y, Mustafa J I, Nohara Y, Nomura Y, Paulatto L, Poncé S, Ponweiser T, Qiao J, Thöle F, Tsirkin S S, Wierzbowska M, Marzari N, Vanderbilt D, Souza I, Mostofi A A and Yates J R 2020 J. Phys.: Condens. Matter 32 165902 [32] Lichtensteiger C 2018 Journal of Applied Crystallography 51 1745 [33] Kuiper P, Kruizinga G, Ghijsen J, Sawatzky G A and Verweij H 1989 PPhys. Rev. Lett. 62 221 [34] Abbate M, de Groot F M F, Fuggle J C, Fujimori A, Tokura Y, Fujishima Y, Strebel O, Domke M, Kaindl G, van Elp J, Thole B T, Sawatzky G A, Sacchi M and Tsuda N 1991 Phys. Rev. B 44 5419 [35] de Groot F M F, Grioni M, Fuggle J C, Ghijsen J, Sawatzky G A and Petersen H 1989 Phys. Rev. B 40 5715 [36] Hu Z, GoldenMS, Fink J, Kaindl G,Warda S A, Reinen D, Mahadevan P and Sarma D D 2000 Phys. Rev. B 61 3739 [37] Liu J, Kargarian M, Kareev M, Gray B, Ryan P J, Cruz A, Tahir N, Chuang Y D, Guo J, Rondinelli J M, Freeland J W, Fiete G A and Chakhalian J 2013 Nat. Commun. 4 2714 [38] Liu J, Jia E, Wang L, Stoerzinger K A, Zhou H, Tang C S, Yin X, He X, Bousquet E, Bowden M E, Wee A T S, Chambers S A and Du Y 2019 Advanced Science 6 1901073 [39] Hwang J, Rao R R, Giordano L, Katayama Y, Yu Y and Shao-Horn Y 2017 Science 358 751 [40] Suntivich J, May K J, Gasteiger H A, Goodenough J B and Shao-Horn Y 2011 Science 334 1383 [41] Petrie J R, Cooper V R, Freeland J W, Meyer T L, Zhang Z, Lutterman D A and Lee H N 2016 J. Am. Chem. Soc. 138 2488 [42] Wang B Y, Lee K and Goodge B H 2024 Ann. Rev. Condensed Matter Phys. 15 305 [43] Attfield J P, Kharlanov A L and McAllister J A 1998 Nature 394 157
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.