Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 038501    DOI: 10.1088/1674-1056/ab695f
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Investigation of gate oxide traps effect on NAND flash memory by TCAD simulation

He-Kun Zhang(章合坤)1, Xuan Tian(田璇)2, Jun-Peng He(何俊鹏)1, Zhe Song(宋哲)2, Qian-Qian Yu(蔚倩倩)2, Liang Li(李靓)2, Ming Li(李明)1, Lian-Cheng Zhao(赵连城)1, Li-Ming Gao(高立明)1
1 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
2 SanDisk Info Tech Shanghai, Shanghai 200241, China
Abstract  The effects of gate oxide traps on gate leakage current and device performance of metal-oxide-nitride-oxide-silicon (MONOS)-structured NAND flash memory are investigated through Sentaurus TCAD. The trap-assisted tunneling (TAT) model is implemented to simulate the leakage current of MONOS-structured memory cell. In this study, trap position, trap density, and trap energy are systematically analyzed for ascertaining their influences on gate leakage current, program/erase speed, and data retention properties. The results show that the traps in blocking layer significantly enhance the gate leakage current and also facilitates the cell program/erase. Trap density ~1018 cm-3 and trap energy ~1 eV in blocking layer can considerably improve cell program/erase speed without deteriorating data retention. The result conduces to understanding the role of gate oxide traps in cell degradation of MONOS-structured NAND flash memory.
Keywords:  NAND flash reliability      gate oxide traps      trap-assisted tunneling      TCAD simulation  
Received:  15 October 2019      Revised:  30 December 2019      Accepted manuscript online: 
PACS:  85.25.Hv (Superconducting logic elements and memory devices; microelectronic circuits)  
  85.40.-e (Microelectronics: LSI, VLSI, ULSI; integrated circuit fabrication technology)  
  85.35.Gv (Single electron devices)  
Fund: Project supported by the SanDisk Info Tech Shanghai, China and the Institute of Microelectronic Materials & Technology, School of Materials Science and Engineering, Shanghai Jiao Tong University, China.
Corresponding Authors:  Li-Ming Gao     E-mail:  liming.gao@sjtu.edu.cn

Cite this article: 

He-Kun Zhang(章合坤), Xuan Tian(田璇), Jun-Peng He(何俊鹏), Zhe Song(宋哲), Qian-Qian Yu(蔚倩倩), Liang Li(李靓), Ming Li(李明), Lian-Cheng Zhao(赵连城), Li-Ming Gao(高立明) Investigation of gate oxide traps effect on NAND flash memory by TCAD simulation 2020 Chin. Phys. B 29 038501

[1] Cha S Y, Kim H J and Choi D J 2010 3rd International Nanoelectronics Conference (INEC), January 3-8, Hong Kong, China, p. 1210
[2] Monzio Compagnoni C, Spinelli A S, Gusmeroli R, Lacaita A L, Beltrami S, Ghetti A and Visconti A 2007 IEEE International Electron Devices Meeting, December 10-12, Washington, USA, p. 165
[3] Albert F, Seol K S, Na J H, Hur S H, Choi J D and Kim K 2009 IEEE International Electron Devices Meeting (IEDM), December 7-9, Baltimore, USA, p. 1
[4] Carmona M, Lopez L, Ogier J and Goguenheim D 2014 IEEE International Integrated Reliability Workshop Final Report (IIRW), October 12-16, South Lake Tahoe, USA, p. 147
[5] Padovani A, Larcher L, Marca V D, Pavan P, Park H and Bersuker G 2011 J. Appl. Phys. 110 014505
[6] Toledano-Luque M, Degraeve R, Zahid M B, Kaczer B, Kittl J, Jurczak M, Groeseneken G and Van Houdt J 2009 IEEE International Electron Devices Meeting (IEDM), December 7-9, Baltimore, USA, p. 1
[7] Oh D, Lee B, Kwon E, Kim S, Cho G, Park S, Lee S and Hong S 2015 IEEE International Memory Workshop (IMW), May 17-20, Monterey, USA, p. 1
[8] Lee K and Shin H 2017 IEEE Trans. Dev. Mater. Reliab. 17 758
[9] Vianello E, Driussi F, Esseni D, Selmi L, Duuren M J V and Widdershoven F 2006 European Solid-State Device Research Conference, September 19-21, Montreux, Switzerland, p. 403
[10] Zimmerman W 1973 Electron. Lett. 9 378
[11] Cuevas A, Stocks M, McDonald D, Kerr M and Samundsett C 1999 IEEE Trans. Electron Dev. 46 2026
[12] Masetti G, Severi M and Solmi S 1983 IEEE Trans. Electron Dev. 30 764
[13] Arora N D, Hauser J R and Roulston D J 1982 IEEE Trans. Electron Dev. 29 292
[14] Barnes J J, Lomax R J and Haddad G I 1976 IEEE Trans. Electron Dev. 23 1042
[15] Meinerzhagen B and Engl W L 1988 IEEE Trans. Electron Dev. 35 689
[16] Swain R, Jena K and Lenka T R 2016 IEEE Trans. Electron Dev. 63 2346
[17] Lau W S, Wong O Y and Wong H 2013 IEEE International Conference of Electron Devices and Solid-state Circuits, June 3-5, Hong Kong, China, p. 1
[18] Southwick R G, Reed J, Buu C, Butler R, Bersuker G and Knowlton W B 2010 IEEE Trans. Dev. Mater. Reliab. 10 201
[19] Masetti G, Severi M and Solmi S 1983 IEEE Trans. Electron Dev. 30 764
[20] Schenk A and Heiser G 1997 J. Appl. Phys. 81 7900
[21] Fossum J G, Mertens R P and Lee D S 1983 Solid-State Electron. 26 569
[22] Swain R, Jena K and Lenka T R 2016 IEEE Trans. Electron Dev. 63 2346
[23] Blauwe J, Houdt J V, Wellkens D, Groeseneken G and Maes H E 1998 IEEE Trans. Electron Dev. 45 1745
[24] You J H, Kim H W, Kim D H, Kim T W and Lee K W 2011 International Conference on Simulation of Semiconductor Processes and Devices, September 8-10, Osaka, Japan, p. 199
[25] Yin Y, Wu J, Lan L, Li X and Wang Q 2013 IEEE International Conference on Solid Dielectrics (ICSD), June 30-July 4, Bologna, Italy, p. 726
[26] Najam F, Yu Y S, Cho K H, Yeo K H, Kim D, Hwang J S, Kim S and Hwang S W 2013 IEEE Trans. Electron Dev. 60 2457
[27] Kamohara S, Park D and Hu C 1998 IEEE International Reliability Physics Symposium Proceedings. 36th Annual), March 31-April 2, Reno, USA, p. 57
[28] Yamada R, Mori Y, Okuyama Y, Yugami J, Nishimoto T and Kume H 2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual, April 10-13, San Jose, USA, p. 200
[29] Driussi F, Iob R, Esseni D, Selmi L, Schaijk R V and Widdershoven F 2004 IEEE Trans. Electron Dev. 51 1570
[30] Suehle J S and Chaparala P 1997 IEEE Trans. Electron Dev. 44 801
[31] Strong A W, Wu E Y, Vollertsen R P, Sune J, Rosa G L, Sullivan T D and Rauch S E 2009 Reliability Wearout Mechanisms in Advanced CMOS Technologies (Hoboken: John Wiley & Sons) p. 272
[32] Chaneliere C, Autran J L and Devine R A B 1999 J. Appl. Phys. 86 480
[33] Sahhaf S, Degareve R, Roussel P J, Kauerauf T, Kaczer B and Groeseneken G 2007 IEEE Int. Electron Devices Meeting Techn. Digest, December 11-14, San Francisco, USA, p. 501
[34] Lo V L, Pey K L, Tung C H and Ang D S 2007 Proc. 45th Int. Reliability Physics Sym. IEEE, April 15-19, Phoenix, USA, p. 576
[35] Sakura T, Utsunomiya H, Kamakura Y and Taniguchi K 1998 IEEE Int. Electron Devices Meeting Techn. Digest, December 6-9, San Francisco, USA, p. 183
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[3] Strategy to mitigate single event upset in 14-nm CMOS bulk FinFET technology
Dong-Qing Li(李东青), Tian-Qi Liu(刘天奇), Pei-Xiong Zhao(赵培雄), Zhen-Yu Wu(吴振宇), Tie-Shan Wang(王铁山), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(5): 056106.
[4] An insulated-gate bipolar transistor model based on the finite-volume charge method
Manhong Zhang(张满红) and Wanchen Wu(武万琛). Chin. Phys. B, 2022, 31(12): 128501.
[5] Device topological thermal management of β-Ga2O3 Schottky barrier diodes
Yang-Tong Yu(俞扬同), Xue-Qiang Xiang(向学强), Xuan-Ze Zhou(周选择), Kai Zhou(周凯), Guang-Wei Xu(徐光伟), Xiao-Long Zhao(赵晓龙), and Shi-Bing Long(龙世兵). Chin. Phys. B, 2021, 30(6): 067302.
[6] Research on SEE mitigation techniques using back junction and p+ buffer layer in domestic non-DTI SiGe HBTs by TCAD
Jia-Nan Wei(魏佳男), Chao-Hui He(贺朝会), Pei Li(李培), Yong-Hong Li(李永宏). Chin. Phys. B, 2019, 28(6): 068503.
[7] Impact of neutron-induced displacement damage on the single event latchup sensitivity of bulk CMOS SRAM
Xiao-Yu Pan(潘霄宇), Hong-Xia Guo(郭红霞), Yin-Hong Luo(罗尹虹), Feng-Qi Zhang(张凤祁), Li-Li Ding(丁李利), Jia-Nan Wei(魏佳男), Wen Zhao(赵雯). Chin. Phys. B, 2017, 26(1): 018501.
[8] Influence of trap-assisted tunneling on trap-assisted tunneling current in double gate tunnel field-effect transistor
Zhi Jiang(蒋 智), Yi-Qi Zhuang(庄奕琪), Cong Li(李 聪), Ping Wang(王 萍), Yu-Qi Liu(刘予琪). Chin. Phys. B, 2016, 25(2): 027701.
[9] Scaling effects of single-event gate rupture in thin oxides
Ding Li-Li (丁李利), Chen Wei (陈伟), Guo Hong-Xia (郭红霞), Yan Yi-Hua (闫逸华), Guo Xiao-Qiang (郭晓强), Fan Ru-Yu (范如玉). Chin. Phys. B, 2013, 22(11): 118501.
No Suggested Reading articles found!