Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 046801    DOI: 10.1088/1674-1056/adb265
SPECIAL TOPIC — Recent progress on kagome metals and superconductors Prev   Next  

High-throughput discovery of kagome materials in transition metal oxide monolayers

Renhong Wang(王人宏)1,2, Cong Wang(王聪)1,2,†, Ruixuan Li(李睿宣)1,3, Deping Guo(郭的坪)4,1, Jiaqi Dai(戴佳琦)1,2, Canbo Zong(宗灿波)1,2, Weihan Zhang(张伟涵)1,2, and Wei Ji(季威)1,2,‡
1 Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, School of Physics, Renmin University of China, Beijing 100872, China;
2 Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China;
3 Beijing No. 35 High School, Beijing 100037, China;
4 College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, China
Abstract  Kagome materials are known for hosting exotic quantum states, including quantum spin liquids, charge density waves, and unconventional superconductivity. The search for kagome monolayers is driven by their ability to exhibit neat and well-defined kagome bands near the Fermi level, which are more easily realized in the absence of interlayer interactions. However, this absence also destabilizes the monolayer forms of many bulk kagome materials, posing significant challenges to their discovery. In this work, we propose a strategy to address this challenge by utilizing oxygen vacancies in transition metal oxides within a "1+3" design framework. Through high-throughput computational screening of 349 candidate materials, we identified 12 thermodynamically stable kagome monolayers with diverse electronic and magnetic properties. These materials were classified into three categories based on their lattice geometry, symmetry, band gaps, and magnetic configurations. Detailed analysis of three representative monolayers revealed kagome band features near their Fermi levels, with orbital contributions varying between oxygen 2p and transition metal d states. This study demonstrates the feasibility of the "1+3" strategy, offering a promising approach to uncovering low-dimensional kagome materials and advancing the exploration of their quantum phenomena.
Keywords:  monolayers      two-dimensional kagome materials      transition metal oxides      high-throughput calculations  
Received:  25 November 2024      Revised:  28 January 2025      Accepted manuscript online:  05 February 2025
PACS:  68.35.Dv (Composition, segregation; defects and impurities)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  75.70.Ak (Magnetic properties of monolayers and thin films)  
Fund: We gratefully acknowledge the financial support from the National Key Research & Development Program of China (Grant No. 2023YFA1406500), the National Natural Science Foundation of China (Grant Nos. 12104504, 52461160327 and 92477205), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China [Grant Nos. 22XNKJ30 (W.J.) and 24XNKJ17 (C.W.)].
Corresponding Authors:  Cong Wang, Wei Ji     E-mail:  wcphys@ruc.edu.cn;wji@ruc.edu.cn

Cite this article: 

Renhong Wang(王人宏), Cong Wang(王聪), Ruixuan Li(李睿宣), Deping Guo(郭的坪), Jiaqi Dai(戴佳琦), Canbo Zong(宗灿波), Weihan Zhang(张伟涵), and Wei Ji(季威) High-throughput discovery of kagome materials in transition metal oxide monolayers 2025 Chin. Phys. B 34 046801

[1] Liu X K, Li X Y, Ren M J, Wang P J and Zhang C W 2022 Chin. Phys. B 31 127203
[2] Ye J Y, Lin Y H, Wang H Z, Song Z D, Feng J, Xie W W and Jia S 2024 Chin. Phys. B 33 057103
[3] Khuntia P, Velazquez M, Barthélemy Q, Bert F, Kermarrec E, Legros A, Bernu B, Messio L, Zorko A and Mendels P 2020 Nat. Phys. 16 469
[4] Zeng Z Y, Ma X Y, Wu S, Li H F, Tao Z, Lu X Y, Chen X H, Mi J X, Song S J, Cao G H, Che G W, Li K, Li G, Luo H Q, Meng Z Y and Li S L 2022 Phys. Rev. B 105 L121109
[5] Morali N, Batabyal R, Nag P K, Liu E, Xu Q N, Sun Y, Yan B H, Felser C, Avraham N and Beidenkopf H 2019 Science 365 1286
[6] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q N, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W H, Schnelle W, Wirth S, Chen Y L, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125
[7] Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C and Chen Y L 2019 Science 365 1282
[8] Wang Q, Xu Y F, Lou R, Liu Z H, Li M, Huang Y B, Shen D W, Weng H M, Wang S C and Lei H C 2018 Nat. Commun. 9 3681
[9] Li S Z, Si J S, Yang Z X and ZhangWB 2024 Phys. Rev. B 109 115418
[10] Liang Z W, Hou X Y, Zhang F, Ma W R, Wu P, Zhang Z Y, Yu F H, Ying J J, Jiang K, Shan L, Wang Z Y and Chen X H 2021 Phys. Rev. X 11 031026
[11] Chen H, Yang H T, Hu B, Zhao Z, Yuan J, Xing Y Q, Qian G J, Huang Z H, Li G, Ye Y H, Ma S, Ni S L, Zhang H, Yin Q W, Gong C S, Tu Z J, Lei H C, Tan H X, Zhou S, Shen C M, Dong X L, Yan B H, Wang Z Q and Gao H J 2021 Nature 599 222
[12] Cao S Z, Xu C C, Fukui H, Manjo T, Dong Y, Shi M, Liu Y, Cao C and Song Y 2023 Nat. Commun. 14 7671
[13] Ortiz B R, Teicher M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J F and Wilson S D 2020 Phys. Rev. Lett. 125 247002
[14] Hu Y,Wu X X, Ortiz B R, Ju S L, Han X, Ma J Z, Plumb N C, Radovic M, Thomale R, Wilson S D, Schnyder A P and Shi M 2022 Nat. Commun. 13 2220
[15] Zhu C C, Yang X F, Xia W, Yin Q W, Wang L S, Zhao C C, Dai D Z, Tu C P, Song B Q, Tao Z C, Tu Z J, Gong C S, Lei H C, Guo Y F and Li S Y 2022 Phys. Rev. B 105 094507
[16] Yu F H, Ma D H, Zhuo W Z, Liu S Q, Wen X K, Lei B, Ying J J and Chen X H 2021 Nat. Commun. 12 3645
[17] Jovanovic M and Schoop L M 2022 J. Am. Chem. Soc. 144 10978
[18] Li Z, Zhuang J C, Wang L, Feng H F, Gao Q, Xu X, Hao W C, Wang X L, Zhang C, Wu K H, Dou S X, Chen L, Hu Z P and Du Y 2018 Science Advances 4 eaau4511
[19] Zhang Z Q, Dai J Q, Wang C, Zhu H, Pang F, Cheng Z H and Ji W 2025 Adv. Funct. Mater. 2416508
[20] Huang L, Kong X H, Zheng Q, Xing Y Q, Chen H, Li Y, Hu Z X, Zhu S Y, Qiao J S, Zhang Y Y, Cheng H X, Cheng Z H, Qiu X G, Liu E, Lei H C, Lin X, Wang Z Q, Yang H T, Ji W and Gao H J 2023 Nat. Commun. 14 5230
[21] Lei L, Dai J Q, Dong H Y, Geng Y Y, Cao F Y, Wang C, Xu R, Pang F, Liu Z X, Li F S, Cheng Z H, Wang G and Ji W 2023 Nat. Commun. 14 6320
[22] Dai J Q, Zhang Z Q, Pan Z M, Wang C, Zhang C D, Cheng Z H and Ji W 2024 arXiv:2408.14285cond-mat.mtrl-sci]
[23] Ortiz B R, Gomes L C, Morey J R,Winiarski M, Bordelon M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M and Toberer E S 2019 Phys. Rev. Mater. 3 094407
[24] Kim S W, Oh H, Moon E G and Kim Y 2023 Nat. Commun. 14 591
[25] Yoo H, Engelke R, Carr S, Fang S, Zhang K, Cazeaux P, Sung S H, Hovden R, Tsen A W., Taniguchi T, Watanabe K, Yi G C, Kim M, Luskin M, Tadmor E B, Kaxiras E and Kim P 2019 Nat. Mater. 18 448
[26] Uri A, Grover S, Cao Y, Crosse J A, Bagani K, Rodan-Legrain D, Myasoedov Y, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P and Zeldov E 2020 Nature 581 47
[27] Lin H C, Huang W T, Zhao K, Lian C S, Duan W H, Chen X and Ji S H 2018 Nano Research 11 4722
[28] Schlickum U, Decker R, Klappenberger F, Zoppellaro G, Klyatskaya S, Auwärter W, Neppl S, Kern K, Brune H, Ruben M and Barth J V 2008 J. Am. Chem. Soc. 130 11778
[29] Pan W C, Mützel C, Haldar S, Hohmann H, Heinze S, Farrell J M, Thomale R, Bode M, Würthner F and Qi J 2024 Angewandte Chemie International Edition 63 e202400313
[30] Tian Q W, Izadi V S, Bagheri T M, Zhang L, Tian Y, Yin L J, Zhang L and Qin Z H 2023 Nano Lett. 23 9851
[31] Lin Y H, Chen C J, Kumar N, Yeh T Y, Lin T H, Blügel S, Bihlmayer G and Hsu P J 2022 Nano Lett. 22 8475
[32] Pan Z M, Xiong W Q, Dai J Q, Wang Y H, Jian T, Cui X X, Deng J H, Lin X Y, Cheng Z B, Bai Y S, Zhu C, Huo D, Li G, Feng M, He J, Ji W, Yuan S J, Wu F C, Zhang C D and Gao H J 2024 arXiv:2307.06001cond-mat.mtrl-sci], 2025 Nature Communications, in Press
[33] Daeneke T, Atkin P, Orrell-Trigg R, Zavabeti A, Ahmed T,Walia S, Liu M, Tachibana Y, Javaid M, Greentree A D, Russo S P, Kaner R B and Kalantar-Zadeh K 2017 ACS Nano 11 10974
[34] Cai J, Wei L Y, Liu J, Xue C W, Chen Z X, Hu Y X, Zang Y J, Wang M X, Shi WJ, Qin T, Zhang H, Chen L W, Liu X, Willinger M G, Hu P J, Liu K H, Yang B, Liu Z K, Liu Z and Wang Z J 2024 Nat. Mater. 23 1654
[35] Zhao G Q, Xie J H, Zhou K, Xing B Y, Wang X J, Tian F Y, He X and Zhang L J 2022 Chin. Phys. B 31 037104
[36] Zhao H Z, Cai Y X, Liang X H, Zhou K, Zou H S and Zhang L J 2023 Chin. Phys. Lett. 40 124601
[37] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[38] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[39] Grimme S, Antony J, Ehrlich S and Krieg H 2010 The Journal of Chemical Physics 132 154104
[40] Liechtenstein A I, Anisimov V I and Zaanen J 1995 Phys. Rev. B 52 R5467
[41] Li P F, Liu X H, Chen M H, Lin P Z, Ren X G, Lin L, Yang C and He L X 2016 Computational Materials Science 112 503
[42] Chen M H, Guo G C and He L X 2010 J. Phys.: Condens. Matter 22 445501
[43] Jin G, Pang H S, Ji Y Y, Dai Z J and He L X 2023 Computer Physics Communications 291 108844
[1] Low-temperature ferromagnetism in tensile-strained LaCoO2.5 thin film
Yang-Yang Fan(范洋洋), Jing Wang(王晶), Feng-Xia Hu(胡凤霞), Bao-He Li(李宝河), Ai-Cong Geng(耿爱丛), Zhuo Yin(殷卓), Cheng Zhang(张丞), Hou-Bo Zhou(周厚博), Meng-Qin Wang(王梦琴), Zi-Bing Yu(尉紫冰), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2023, 32(8): 087504.
[2] Computational screening of doping schemes for LiTi2(PO4)3 as cathode coating materials
Yu-Qi Wang(王宇琦), Xiao-Rui Sun(孙晓瑞), Rui-Juan Xiao(肖睿娟), Li-Quan Chen(陈立泉). Chin. Phys. B, 2020, 29(3): 038202.
[3] Structural, mechanical, and electronic properties of 25 kinds of Ⅲ-V binary monolayers:A computational study with first-principles calculation
Xue-Fei Liu(刘雪飞), Zi-Jiang Luo(罗子江), Xun Zhou(周勋), Jie-Min Wei(魏节敏), Yi Wang(王一), Xiang Guo(郭祥), Bing Lv(吕兵), Zhao Ding(丁召). Chin. Phys. B, 2019, 28(8): 086105.
[4] The effects of combining alloying elements on the elastic properties of γ-Ni in Ni-based superalloy: High-throughput first-principles calculations
Baokun Lu(路宝坤), Chongyu Wang(王崇愚). Chin. Phys. B, 2018, 27(7): 077104.
[5] Behavior of lysozyme adsorbed onto biological liquid crystal lipid monolayer at the air/water interface
Xiaolong Lu(逯晓龙), Ruixin Shi(史瑞新), Changchun Hao(郝长春), Huan Chen(陈欢), Lei Zhang(张蕾), Junhua Li(李俊花), Guoqing Xu(徐国庆), Runguang Sun(孙润广). Chin. Phys. B, 2016, 25(9): 090506.
[6] Analysis of the induction of the myelin basic protein binding to the plasma membrane phospholipid monolayer
Lei Zhang(张蕾), Changchun Hao(郝长春), Ying Feng(冯盈), Feng Gao(高峰), Xiaolong Lu(逯晓龙), Junhua Li(李俊花), Runguang Sun(孙润广). Chin. Phys. B, 2016, 25(9): 090507.
[7] High-throughput theoretical design of lithium battery materials
Shi-Gang Ling(凌仕刚), Jian Gao(高健), Rui-Juan Xiao(肖睿娟), Li-Quan Chen(陈立泉). Chin. Phys. B, 2016, 25(1): 018208.
[8] A theoretical investigation on anomalous switching of single-stranded deoxyribonucleic acid (ssDNA) monolayers by water vapor
Zhao Xin-Jun (赵新军), Gao Zhi-Fu (高志福), Jiang Zhong-Ying (蒋中英). Chin. Phys. B, 2015, 24(4): 044701.
No Suggested Reading articles found!