1 Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, School of Physics, Renmin University of China, Beijing 100872, China; 2 Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China; 3 Beijing No. 35 High School, Beijing 100037, China; 4 College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, China
Abstract Kagome materials are known for hosting exotic quantum states, including quantum spin liquids, charge density waves, and unconventional superconductivity. The search for kagome monolayers is driven by their ability to exhibit neat and well-defined kagome bands near the Fermi level, which are more easily realized in the absence of interlayer interactions. However, this absence also destabilizes the monolayer forms of many bulk kagome materials, posing significant challenges to their discovery. In this work, we propose a strategy to address this challenge by utilizing oxygen vacancies in transition metal oxides within a "13" design framework. Through high-throughput computational screening of 349 candidate materials, we identified 12 thermodynamically stable kagome monolayers with diverse electronic and magnetic properties. These materials were classified into three categories based on their lattice geometry, symmetry, band gaps, and magnetic configurations. Detailed analysis of three representative monolayers revealed kagome band features near their Fermi levels, with orbital contributions varying between oxygen 2p and transition metal d states. This study demonstrates the feasibility of the "13" strategy, offering a promising approach to uncovering low-dimensional kagome materials and advancing the exploration of their quantum phenomena.
(Magnetic properties of monolayers and thin films)
Fund: We gratefully acknowledge the financial support from the National Key Research & Development Program of China (Grant No. 2023YFA1406500), the National Natural Science Foundation of China (Grant Nos. 12104504, 52461160327 and 92477205), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China [Grant Nos. 22XNKJ30 (W.J.) and 24XNKJ17 (C.W.)].
Corresponding Authors:
Cong Wang, Wei Ji
E-mail: wcphys@ruc.edu.cn;wji@ruc.edu.cn
Cite this article:
Renhong Wang(王人宏), Cong Wang(王聪), Ruixuan Li(李睿宣), Deping Guo(郭的坪), Jiaqi Dai(戴佳琦), Canbo Zong(宗灿波), Weihan Zhang(张伟涵), and Wei Ji(季威) High-throughput discovery of kagome materials in transition metal oxide monolayers 2025 Chin. Phys. B 34 046801
[1] Liu X K, Li X Y, Ren M J, Wang P J and Zhang C W 2022 Chin. Phys. B 31 127203 [2] Ye J Y, Lin Y H, Wang H Z, Song Z D, Feng J, Xie W W and Jia S 2024 Chin. Phys. B 33 057103 [3] Khuntia P, Velazquez M, Barthélemy Q, Bert F, Kermarrec E, Legros A, Bernu B, Messio L, Zorko A and Mendels P 2020 Nat. Phys. 16 469 [4] Zeng Z Y, Ma X Y, Wu S, Li H F, Tao Z, Lu X Y, Chen X H, Mi J X, Song S J, Cao G H, Che G W, Li K, Li G, Luo H Q, Meng Z Y and Li S L 2022 Phys. Rev. B 105 L121109 [5] Morali N, Batabyal R, Nag P K, Liu E, Xu Q N, Sun Y, Yan B H, Felser C, Avraham N and Beidenkopf H 2019 Science 365 1286 [6] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q N, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W H, Schnelle W, Wirth S, Chen Y L, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125 [7] Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C and Chen Y L 2019 Science 365 1282 [8] Wang Q, Xu Y F, Lou R, Liu Z H, Li M, Huang Y B, Shen D W, Weng H M, Wang S C and Lei H C 2018 Nat. Commun. 9 3681 [9] Li S Z, Si J S, Yang Z X and ZhangWB 2024 Phys. Rev. B 109 115418 [10] Liang Z W, Hou X Y, Zhang F, Ma W R, Wu P, Zhang Z Y, Yu F H, Ying J J, Jiang K, Shan L, Wang Z Y and Chen X H 2021 Phys. Rev. X 11 031026 [11] Chen H, Yang H T, Hu B, Zhao Z, Yuan J, Xing Y Q, Qian G J, Huang Z H, Li G, Ye Y H, Ma S, Ni S L, Zhang H, Yin Q W, Gong C S, Tu Z J, Lei H C, Tan H X, Zhou S, Shen C M, Dong X L, Yan B H, Wang Z Q and Gao H J 2021 Nature 599 222 [12] Cao S Z, Xu C C, Fukui H, Manjo T, Dong Y, Shi M, Liu Y, Cao C and Song Y 2023 Nat. Commun. 14 7671 [13] Ortiz B R, Teicher M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J F and Wilson S D 2020 Phys. Rev. Lett. 125 247002 [14] Hu Y,Wu X X, Ortiz B R, Ju S L, Han X, Ma J Z, Plumb N C, Radovic M, Thomale R, Wilson S D, Schnyder A P and Shi M 2022 Nat. Commun. 13 2220 [15] Zhu C C, Yang X F, Xia W, Yin Q W, Wang L S, Zhao C C, Dai D Z, Tu C P, Song B Q, Tao Z C, Tu Z J, Gong C S, Lei H C, Guo Y F and Li S Y 2022 Phys. Rev. B 105 094507 [16] Yu F H, Ma D H, Zhuo W Z, Liu S Q, Wen X K, Lei B, Ying J J and Chen X H 2021 Nat. Commun. 12 3645 [17] Jovanovic M and Schoop L M 2022 J. Am. Chem. Soc. 144 10978 [18] Li Z, Zhuang J C, Wang L, Feng H F, Gao Q, Xu X, Hao W C, Wang X L, Zhang C, Wu K H, Dou S X, Chen L, Hu Z P and Du Y 2018 Science Advances 4 eaau4511 [19] Zhang Z Q, Dai J Q, Wang C, Zhu H, Pang F, Cheng Z H and Ji W 2025 Adv. Funct. Mater. 2416508 [20] Huang L, Kong X H, Zheng Q, Xing Y Q, Chen H, Li Y, Hu Z X, Zhu S Y, Qiao J S, Zhang Y Y, Cheng H X, Cheng Z H, Qiu X G, Liu E, Lei H C, Lin X, Wang Z Q, Yang H T, Ji W and Gao H J 2023 Nat. Commun. 14 5230 [21] Lei L, Dai J Q, Dong H Y, Geng Y Y, Cao F Y, Wang C, Xu R, Pang F, Liu Z X, Li F S, Cheng Z H, Wang G and Ji W 2023 Nat. Commun. 14 6320 [22] Dai J Q, Zhang Z Q, Pan Z M, Wang C, Zhang C D, Cheng Z H and Ji W 2024 arXiv:2408.14285cond-mat.mtrl-sci] [23] Ortiz B R, Gomes L C, Morey J R,Winiarski M, Bordelon M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M and Toberer E S 2019 Phys. Rev. Mater. 3 094407 [24] Kim S W, Oh H, Moon E G and Kim Y 2023 Nat. Commun. 14 591 [25] Yoo H, Engelke R, Carr S, Fang S, Zhang K, Cazeaux P, Sung S H, Hovden R, Tsen A W., Taniguchi T, Watanabe K, Yi G C, Kim M, Luskin M, Tadmor E B, Kaxiras E and Kim P 2019 Nat. Mater. 18 448 [26] Uri A, Grover S, Cao Y, Crosse J A, Bagani K, Rodan-Legrain D, Myasoedov Y, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P and Zeldov E 2020 Nature 581 47 [27] Lin H C, Huang W T, Zhao K, Lian C S, Duan W H, Chen X and Ji S H 2018 Nano Research 11 4722 [28] Schlickum U, Decker R, Klappenberger F, Zoppellaro G, Klyatskaya S, Auwärter W, Neppl S, Kern K, Brune H, Ruben M and Barth J V 2008 J. Am. Chem. Soc. 130 11778 [29] Pan W C, Mützel C, Haldar S, Hohmann H, Heinze S, Farrell J M, Thomale R, Bode M, Würthner F and Qi J 2024 Angewandte Chemie International Edition 63 e202400313 [30] Tian Q W, Izadi V S, Bagheri T M, Zhang L, Tian Y, Yin L J, Zhang L and Qin Z H 2023 Nano Lett. 23 9851 [31] Lin Y H, Chen C J, Kumar N, Yeh T Y, Lin T H, Blügel S, Bihlmayer G and Hsu P J 2022 Nano Lett. 22 8475 [32] Pan Z M, Xiong W Q, Dai J Q, Wang Y H, Jian T, Cui X X, Deng J H, Lin X Y, Cheng Z B, Bai Y S, Zhu C, Huo D, Li G, Feng M, He J, Ji W, Yuan S J, Wu F C, Zhang C D and Gao H J 2024 arXiv:2307.06001cond-mat.mtrl-sci], 2025 Nature Communications, in Press [33] Daeneke T, Atkin P, Orrell-Trigg R, Zavabeti A, Ahmed T,Walia S, Liu M, Tachibana Y, Javaid M, Greentree A D, Russo S P, Kaner R B and Kalantar-Zadeh K 2017 ACS Nano 11 10974 [34] Cai J, Wei L Y, Liu J, Xue C W, Chen Z X, Hu Y X, Zang Y J, Wang M X, Shi WJ, Qin T, Zhang H, Chen L W, Liu X, Willinger M G, Hu P J, Liu K H, Yang B, Liu Z K, Liu Z and Wang Z J 2024 Nat. Mater. 23 1654 [35] Zhao G Q, Xie J H, Zhou K, Xing B Y, Wang X J, Tian F Y, He X and Zhang L J 2022 Chin. Phys. B 31 037104 [36] Zhao H Z, Cai Y X, Liang X H, Zhou K, Zou H S and Zhang L J 2023 Chin. Phys. Lett. 40 124601 [37] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [38] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [39] Grimme S, Antony J, Ehrlich S and Krieg H 2010 The Journal of Chemical Physics 132 154104 [40] Liechtenstein A I, Anisimov V I and Zaanen J 1995 Phys. Rev. B 52 R5467 [41] Li P F, Liu X H, Chen M H, Lin P Z, Ren X G, Lin L, Yang C and He L X 2016 Computational Materials Science 112 503 [42] Chen M H, Guo G C and He L X 2010 J. Phys.: Condens. Matter 22 445501 [43] Jin G, Pang H S, Ji Y Y, Dai Z J and He L X 2023 Computer Physics Communications 291 108844
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.