Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 067506    DOI: 10.1088/1674-1056/addaa0
Special Issue: SPECIAL TOPIC — Advanced magnonics
SPECIAL TOPIC — Advanced magnonics Prev   Next  

First- and second-order magnonic topologies in the ferromagnetic breathing SSH model modulated by non-Hermitian effects

Huasu Fu(付华宿)1,2, Lichuan Zhang(张礼川)1,2,†, Rami Mrad1,2, Yuee Xie(谢月娥)1,2,‡, and Yuanping Chen(陈元平)1,2,§
1 School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China;
2 Jiangsu Engineering Research Center on Quantum Perception and Intelligent Detection of Agricultural Information, Zhenjiang 212013, China
Abstract  We investigate magnonic topology in the breathing Su-Schrieffer-Heeger (SSH) model, incorporating non-Hermitian effects. Our results demonstrate the coexistence of first- and second-order magnonic topologies, with non-Hermitian effects exhibiting size-dependent behavior. In two-dimensional systems, non-Hermitian terms induce a flat band and gap closure along high-symmetry paths, whereas in one-dimensional systems, a finite band gap persists for small system sizes. Additionally, the corner states remain robust, and a pronounced non-Hermitian skin effect emerges. Our findings provide new insights into magnon-based devices, emphasizing the impact of non-Hermitian effects on their design and functionality.
Keywords:  magnon      non-Hermitian      corner state  
Received:  24 February 2025      Revised:  11 May 2025      Accepted manuscript online:  20 May 2025
PACS:  75.30.Ds (Spin waves)  
  75.10.-b (General theory and models of magnetic ordering)  
  75.10.Hk (Classical spin models)  
  02.40.Pc (General topology)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12347156, 12174157, 12074150, and 12174158), the National Key Research and Development Program of China (Grant No. 2022YFA1405200), the Natural Science Foundation of Jiangsu Province (Grant No. BK20230516), and the Scientific Research Project of Jiangsu University (Grant No. 550171001).
Corresponding Authors:  Lichuan Zhang, Yuee Xie, Yuanping Chen     E-mail:  Lichuan.zhang@ujs.edu.cn;yueex@ujs.edu.cn;chenyp@ujs.edu.cn

Cite this article: 

Huasu Fu(付华宿), Lichuan Zhang(张礼川), Rami Mrad, Yuee Xie(谢月娥), and Yuanping Chen(陈元平) First- and second-order magnonic topologies in the ferromagnetic breathing SSH model modulated by non-Hermitian effects 2025 Chin. Phys. B 34 067506

[1] Zhu D, Yang Y, Lee K, Mishra R, Go G, Oh S H, Kim D H, Cai K, Liu E, Pollard S D, Shi S, Lee J, Teo K L, Wu Y, Lee K J and Yang H 2019 Science 366 1125
[2] Barman A, Gubbiotti G, Ladak S, et al. 2021 J. Phys.: Condens. Matter 33 413001
[3] Saleem L, Abdullah H M, Schwingenschlögl U and Manchon A 2025 Phys. Rev. B 111 024416
[4] Wang X S, Zhang H W and Wang X R 2018 Phys. Rev. Appl. 9 024029
[5] Liu J, Wang L and Shen K 2023 Phys. Rev. B 107 174404
[6] Zhuo F, Kang J, Manchon A and Cheng Z 2025 Adv. Phys. Res. 4 2300054
[7] Li K 2023 Chin. Phys. Lett. 40 027502
[8] Mook A, Henk J and Mertig I 2014 Phys. Rev. B 90 024412
[9] Katsura H, Nagaosa N and Lee P A 2010 Phys. Rev. Lett. 104 066403
[10] Zhang L C, Zhu F, Go D, Lux F R, dos Santos F J, Lounis S, Su Y, Blügel S and Mokrousov Y 2021 Phys. Rev. B 103 134414
[11] Zhang L C, Onykiienko Y A, Buhl P M, Tymoshenko Y V, Čermák P, Schneidewind A, Stewart J R, Henschel A, Schmidt M, Blügel S, Inosov D S and Mokrousov Y 2020 Phys. Rev. Res. 2 013063
[12] Su Y, Wang X S and Wang X R 2017 Phys. Rev. B 95 224403
[13] Wang M, Xiao G L, Zhang D W, Sun Z Y and Zheng L L 2023 IEEE Photonics Journal 15 1
[14] Flebus B, Duine R A and Hurst H M 2020 Phys. Rev. B 102 180408
[15] Deng K and Flebus B 2022 Phys. Rev. B 105 L180406
[16] Cai C 2023 Phys. Rev. B 108 174421
[17] Zheng M 2024 Phys. Rev. Lett. 132 086502
[18] Qian J 2024 Phys. Rev. Lett. 132 156901
[19] Zeng B and Yu T 2023 Phys. Rev. Res. 5 013003
[20] Mook A, Henk J and Mertig I 2014 Phys. Rev. B 89 134409
[21] Nakata K, Kim S K, Klinovaja J and Loss D 2017 Phys. Rev. B 96 224414
[22] Li Z, Cao Y, Yan P and Wang X 2019 Npj Comput. Mater. 5 107
[23] Li Z X, Cao Y, Wang X R and Yan P 2020 Phys. Rev. B 101 184404
[24] Li Z X, Cao Y, Wang X R and Yan P 2020 Phys. Rev. Appl. 13 064058
[25] El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S and Christodoulides D N 2018 Nat. Phys. 14 11
[26] Bergholtz E J, Budich J C and Kunst F K 2021 Rev. Mod. Phys. 93 015005
[27] Konotop V V 2016 Rev. Mod. Phys. 88 035002
[28] Ashida Y, Gong Z and Ueda M 2020 Adv. Phys. 69 249
[29] Rameshti B Z, Kusminskiy S V, Haigh J A, Usami K, Lachance- Quirion D, Nakamura Y, Hu C M, Tang H X, Bauer G EWand Blanter Y M 2022 Phys. Rep. 979 1
[30] Lin R, Tai T, Li L and Lee C H 2023 Front. Phys. 18 53605
[31] Yuan H Y, Cao Y, Kamra A, Duine R A and Yan P 2022 Phys. Rep. 965 1
[32] Okuma N and Sato M 2023 Annu. Rev. Condens. Matter Phys. 14 83
[33] Ding K, Fang C and Ma G 2022 Nat. Rev. Phys. 4 745
[34] Hurst H M and Flebus B 2022 J. Appl. Phys. 132 220902
[35] Zhou D and Zhang J 2020 Phys. Rev. Res. 2 023173
[36] Helbig T, Hofmann T, Imhof S, Abdelghany M, Kiessling T, Molenkamp LW, Lee C H, Szameit A, Greiter M and Thomale R 2020 Nat. Phys. 16 747
[37] Hou T X and Li W 2024 Phys. Rev. A 109 022616
[38] Feng L, Wong Z J, Ma R M, Wang Y and Zhang X 2014 Science 346 972
[39] Weidemann S, Kremer M, Helbig T, Hofmann T, Stegmaier A, Greiter M, Thomale R and Szameit A 2020 Science 368 311
[40] Christensen J 2016 Phys. Rev. Lett. 116 207601
[41] del Pino J, Slim J J and Verhagen E 2022 Nature 606 82
[42] Süsstrunk R and Huber S D 2015 Science 349 47
[43] Trainiti G, Xia Y, Marconi J, Cazzulani G, Erturk A and Ruzzene M 2019 Phys. Rev. Lett. 122 124301
[44] Li L, Lee C H, Mu S and Gong J 2020 Nat. Commun. 11 5491
[45] Ma X R, Cao K, Wang X R, Wei Z, Du Q and Kou S P 2024 Phys. Rev. Res. 6 013213
[46] Yoshida T, Zhang S B, Neupert T and Kawakami N 2024 Phys. Rev. Lett. 133 076502
[47] Gliozzi J, De Tomasi G and Hughes T L 2024 Phys. Rev. Lett. 133 136503
[48] Huang Q K L, Liu Y K, Cao P C, Zhu X F and Li Y 2023 Chin. Phys. Lett. 40 106601
[49] Hata T, Nakano E, Iida K, Tajima H and Takahashi J 2021 Phys. Rev. B 104 144424
[50] Ying W, Su Y, Chen Z H, Wang Y and Huo P 2024 J. Chem. Phys. 161 144112
[51] Zhang M H and Yao D X 2023 Phys. Rev. B 107 024408
[52] Holstein T and Primakoff H 1940 Phys. Rev. 58 1098
[53] Yuce C and Ramezani H 2019 Phys. Rev. A 100 032102
[54] Mook A, Henk J and Mertig I 2014 Phys. Rev. B 89 134409
[55] Zhang L, Go D, Hanke J P, Buhl P M, Grytsiuk S, Blügel S, Lux F R and Mokrousov Y 2020 Commun. Phys. 3 227
[56] Obana D, Liu F and Wakabayashi K 2019 Phys. Rev. B 100 075437
[57] Yu T, Zhang X, Sharma S, Blanter Y M and Bauer G E W 2020 Phys. Rev. B 101 094414
[58] Yu T, Zhang Y X, Sharma S, Zhang X, Blanter Y M and Bauer G E W 2020 Phys. Rev. Lett. 124 107202
[1] Non-Hermitian birefringent Dirac fermions driven by electromagnetic fields
Kai Liu(刘恺), Wan-Zi Sun(孙万梓), Cheng-Xi Li(李成蹊), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2025, 34(7): 077104.
[2] Simulation of the non-Hermitian Kitaev chain by electrical circuits
Jiali Xu(徐佳莉), Hao Geng(耿昊), Abdul Wahab, Xiaosen Yang(杨孝森), Yuee Xie(谢月娥), and Yuanping Chen(陈元平). Chin. Phys. B, 2025, 34(6): 068401.
[3] A two-stage injection locking amplifier based on a cavity magnonic oscillator
Mun Kim, Chunlei Zhang, Chenyang Lu, Jacob Burgess, and Can-Ming Hu. Chin. Phys. B, 2025, 34(6): 067104.
[4] Magnon behavior in YIG film under microwave excitation investigated by Brillouin light scattering
Guofu Xu(徐国服), Kang An(安康), Wenjun Ma(马文俊), Xiling Li(李喜玲), C. K. Ong, Chi Zhang(张驰), and Guozhi Chai(柴国志). Chin. Phys. B, 2025, 34(6): 067507.
[5] Bifurcation of the bound states in the continuum in a dissipative cavity magnonic system
Xinlin Mi(米锌林), Lijun Yan(闫丽君), Bimu Yao(姚碧霂), Shishen Yan(颜世申), Jinwei Rao(饶金威), and Lihui Bai(柏利慧). Chin. Phys. B, 2025, 34(6): 067508.
[6] Magnon-magnon coupling in noncollinear synthetic antiferromagnets
Tengfei Zhang(张腾飞), Quwen Wang(王曲文), Min Chen(陈敏), Jie Dong(董洁), Qian Zhao(赵乾), Zimu Li(李子木), Qingfang Liu(刘青芳), Jianbo Wang(王建波), and Jinwu Wei(魏晋武). Chin. Phys. B, 2025, 34(5): 057201.
[7] Nonreciprocal microwave-optical entanglement in Kerr-modified cavity optomagnomechanics
Ming-Yue Liu(刘明月), Yuan Gong(龚媛), Jiaojiao Chen(陈姣姣), Yan-Wei Wang(王艳伟), and Wei Xiong(熊伟). Chin. Phys. B, 2025, 34(5): 057202.
[8] Exactly solvable models for non-Hermitian systems under nonadiabatic quench dynamics
Kangyi Hu(胡康溢), Menghua Deng(邓孟华), and Fuxiang Li(李福祥). Chin. Phys. B, 2025, 34(5): 050204.
[9] Three-body physics under dissipative spin-orbit coupling
Xi Zhao(赵茜). Chin. Phys. B, 2025, 34(3): 033101.
[10] Topological transmission and topological corner states combiner in all-dielectric honeycomb valley photonic crystals
Ming Sun(孙铭), Xiao-Fang Xu(许孝芳), Yun-Feng Shen(沈云峰), Ya-Qing Chang(常雅箐), and Wen-Ji Zhou(周文佶). Chin. Phys. B, 2025, 34(3): 034206.
[11] Higher-order topology in twisted multilayer systems: A review
Chunbo Hua(花春波) and Dong-Hui Xu(许东辉). Chin. Phys. B, 2025, 34(3): 037301.
[12] Strain-manipulated dispersion characteristics of magnonic crystals with Dzyaloshinskii-Moriya interaction and applications on spin-wave devices
Chuhan Zhou(周楚涵), Xiaotian Jiao(焦晓天), Jiaxi Xu(徐佳熙), Zhaonian Jin(金兆年), Lin Chen(陈琳), and Zhikuo Tao(陶志阔). Chin. Phys. B, 2025, 34(2): 027501.
[13] Frequency combs based on magnon-skyrmion interaction in magnetic nanotubes
Tijjani Abdulrazak, Xuejuan Liu(刘雪娟), Zhejunyu Jin(金哲珺雨), Yunshan Cao(曹云姗), and Peng Yan(严鹏). Chin. Phys. B, 2024, 33(8): 087503.
[14] Anomalous time-reversal symmetric non-Hermitian systems
Yifei Yi(易益妃). Chin. Phys. B, 2024, 33(6): 060302.
[15] Exceptional points and quantum dynamics in a non-Hermitian two-qubit system
Yi-Xi Zhang(张益玺), Zhen-Tao Zhang(张振涛), Zhen-Shan Yang(杨震山), Xiao-Zhi Wei(魏晓志), and Bao-Long Liang(梁宝龙). Chin. Phys. B, 2024, 33(6): 060308.
No Suggested Reading articles found!