Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
Abstract Lanthanide metal-organic frameworks (Ln-MOFs) have received extensive attention in the development of photoluminescent (PL) materials due to their stable structures and unique line-like emission spectroscopic properties. However, in order to prepare Ln-MOFs with high PL quantum yield (PLQY), further improving the sensitization efficiency of the "antenna effect" is essential. Herein, remarkably enhanced PL in [Tb(BDC)(DMF)(HO)] MOF is successfully achieved via high-pressure engineering at room temperature. Notably, the PL intensity continues to increase as the pressure increases, reaching its peak at 12.0 GPa, which is 4.4 times that of the initial state. Detailed experimental and theoretical calculations have demonstrated that pressure engineering significantly narrows the bandgap of [Tb(BDC)(DMF)(HO)], optimizing both singlet and triplet energy levels. Ultimately, higher antenna effect sensitization efficiency is achieved by promoting intersystem crossing and energy transfer processes. Our work provides a promising strategy for the development of high PLQY Ln-MOFs.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12304261 and 12274177) and the China Postdoctoral Science Foundation (Grant No. 2024M751076).
Corresponding Authors:
Qing Yang, Yixuan Wang, Xinyi Yang
E-mail: yangqing21@mails.jlu.edu.cn;wangyixuan19@jlu.edu.cn;yangxinyi@jlu.edu.cn
Cite this article:
Yunfeng Yang(杨云峰), Kaiyan Yuan(袁开岩), Binhao Yang(杨斌豪), Qing Yang(杨青), Yixuan Wang(王艺璇), and Xinyi Yang(杨新一)§ Pressure-promoted ligand to metal energy transfer for emission enhancement of [Tb2(BDC)3(DMF)2(H2O)2]n metal-organic framework 2025 Chin. Phys. B 34 036101
[1] Bünzli J C G 2006 Acc. Chem. Res. 39 53 [2] Heffern M C, Matosziuk L M and Meade T J 2014 Chem. Rev. 114 4496 [3] Zhou J, Liu Q, Feng W, Sun Y and Li F 2015 Chem. Rev. 115 395 [4] Vicinelli V, Ceroni P, Maestri M, Balzani V, Gorka M and Vögtle F 2002 J. Am. Chem. Soc. 124 6461 [5] Bekiari V and Lianos P 1998 Adv. Mater. 10 1455 [6] Weissman S I 1942 J. Chem. Phys. 10 214 [7] Feng J and Zhang H 2013 Chem. Soc. Rev. 42 387 [8] Lustig W P, Wang F, Teat S J, Hu Z, Gong Q and Li J 2016 Inorg. Chem. 55 7250 [9] Liu Q, Yu J and Hu J 2024 Chin. Phys. B 33 017204 [10] Cui Y, Xu H, Yue Y, Guo Z, Yu J, Chen Z, Gao J, Yang Y, Qian G and Chen B 2012 J. Am. Chem. Soc. 134 3979 [11] Wang Z, Schliehe C, Wang T, Nagaoka Y, Cao Y C, Bassett W A, Wu H, Fan H and Weller H 2011 J. Am. Chem. Soc. 133 14484 [12] Wang T, Li R, Quan Z, Loc W S, Bassett W A, Xu H, Cao Y C, Fang J and Wang Z 2015 Adv. Mater. 27 4544 [13] Guo S, Li Y, Mao Y, TaoW, Bu K, Fu T, Zhao C, Luo H, Hu Q, Zhu H, Shi E, Yang W, Dou L and Lü X 2022 Sci. Adv. 8 eadd1984 [14] Ma Z, Liu Z, Lu S, Wang L, Feng X, Yang D, Wang K, Xiao G, Zhang L, Redfern S A T and Zou B 2018 Nat. Commun. 9 4506 [15] Wu M, Liu H, Liu H, Lu T,Wang S, Niu G, Sui L, Bai F, Yang B,Wang K, Yang X and Zou B 2022 J. Phys. Chem. Lett. 13 2493 [16] Yang Y, Wang Y, Bai F Q, Li S X, Yang Q, Wang W, Yang X and Zou B 2024 Nano Lett. 24 9898 [17] Wang Y, Yang Y, Yang X and Zou B 2024 Sci. China Chem. 67 2890 [18] Yang Q, Yang X, Wang Y, Fei Y, Li F, Zheng H, Li K, Han Y, Hattori T, Zhu P, Zhao S, Fang L, Hou X, Liu Z, Yang B and Zou B 2024 Nat. Commun. 15 7778 [19] Wang Y, Yang X, Liu C, Liu Z, Fang Q, Bai F, Wang S, Hou X, Feng B, Chen B and Zou B 2022 Angew. Chem. Int. Ed. 134 e202210836 [20] Panyarat K, Ngamjarurojana A and Rujiwatra A 2019 J. Photoch. Photobio. A 377 167 [21] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15 [22] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [23] Blöchl P E 1994 Phys. Rev. B 50 17953 [24] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [25] Wang Y, Lü X, Yang W, Wen T, Yang L, Ren X, Wang L, Lin Z and Zhao Y 2015 J. Am. Chem. Soc. 137 11144 [26] Jaffe A, Lin Y, Beavers C M, Voss J, Mao W L and Karunadasa H I 2016 ACS Cent. Sci. 2 201 [27] Zhang L, Liu C, Wang L, Liu C, Wang K and Zou B 2018 Angew. Chem. Int. Ed. 57 11213 [28] Li W, Probert M R, Kosa M, Bennett T D, Thirumurugan A, Burwood R P, Parinello M, Howard J A K and Cheetham A K 2012 J. Am. Chem. Soc. 134 11940 [29] Zhao F, Hu J, Guan D, Liu J, Zhang X, Ling H, Zhang Y and Liu Q 2023 Adv. Mater. 35 2304907 [30] Zhang P, Ke J, Tu D, Li J, Pei Y,Wang L, Shang X, Guan T, Lu S, Chen Z and Chen X 2022 Angew. Chem. Int. Ed. 61 e202112125 [31] Zhou B, Qi Z and Yan D 2022 Angew. Chem. Int. Ed. 61 e202208735 [32] Crowley J M, Tahir-Kheli J and Goddard W A 2016 J. Phys. Chem. Lett. 7 1198 [33] MengW,Wang X, Xiao Z,Wang J, Mitzi D B and Yan Y 2017 J. Phys. Chem. Lett. 8 2999 [34] Luo J, Wang X, Li S, Liu J, Guo Y, Niu G, Yao L, Fu Y, Gao L, Dong Q, Zhao C, Leng M, Ma F, Liang W, Wang L, Jin S, Han J, Zhang L, Etheridge J, Wang J, Yan Y, Sargent E H and Tang J 2018 Nature 563 541
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.