Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(3): 036101    DOI: 10.1088/1674-1056/ada755
Special Issue: SPECIAL TOPIC — Structures and properties of materials under high pressure
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

Pressure-promoted ligand to metal energy transfer for emission enhancement of [Tb2(BDC)3(DMF)2(H2O)2]n metal-organic framework

Yunfeng Yang(杨云峰), Kaiyan Yuan(袁开岩), Binhao Yang(杨斌豪), Qing Yang(杨青)†, Yixuan Wang(王艺璇)‡, and Xinyi Yang(杨新一)§
Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
Abstract  Lanthanide metal-organic frameworks (Ln-MOFs) have received extensive attention in the development of photoluminescent (PL) materials due to their stable structures and unique line-like emission spectroscopic properties. However, in order to prepare Ln-MOFs with high PL quantum yield (PLQY), further improving the sensitization efficiency of the "antenna effect" is essential. Herein, remarkably enhanced PL in [Tb2(BDC)3(DMF)2(H2O)2]n MOF is successfully achieved via high-pressure engineering at room temperature. Notably, the PL intensity continues to increase as the pressure increases, reaching its peak at 12.0 GPa, which is 4.4 times that of the initial state. Detailed experimental and theoretical calculations have demonstrated that pressure engineering significantly narrows the bandgap of [Tb2(BDC)3(DMF)2(H2O)2]n, optimizing both singlet and triplet energy levels. Ultimately, higher antenna effect sensitization efficiency is achieved by promoting intersystem crossing and energy transfer processes. Our work provides a promising strategy for the development of high PLQY Ln-MOFs.
Keywords:  lanthanide metal-organic frameworks      high pressure      green light photoluminescence enhancement      energy transfer  
Received:  26 November 2024      Revised:  04 January 2025      Accepted manuscript online:  08 January 2025
PACS:  61.05.cp (X-ray diffraction)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  78.55.-m (Photoluminescence, properties and materials)  
  81.40.Vw (Pressure treatment)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12304261 and 12274177) and the China Postdoctoral Science Foundation (Grant No. 2024M751076).
Corresponding Authors:  Qing Yang, Yixuan Wang, Xinyi Yang     E-mail:  yangqing21@mails.jlu.edu.cn;wangyixuan19@jlu.edu.cn;yangxinyi@jlu.edu.cn

Cite this article: 

Yunfeng Yang(杨云峰), Kaiyan Yuan(袁开岩), Binhao Yang(杨斌豪), Qing Yang(杨青), Yixuan Wang(王艺璇), and Xinyi Yang(杨新一)§ Pressure-promoted ligand to metal energy transfer for emission enhancement of [Tb2(BDC)3(DMF)2(H2O)2]n metal-organic framework 2025 Chin. Phys. B 34 036101

[1] Bünzli J C G 2006 Acc. Chem. Res. 39 53
[2] Heffern M C, Matosziuk L M and Meade T J 2014 Chem. Rev. 114 4496
[3] Zhou J, Liu Q, Feng W, Sun Y and Li F 2015 Chem. Rev. 115 395
[4] Vicinelli V, Ceroni P, Maestri M, Balzani V, Gorka M and Vögtle F 2002 J. Am. Chem. Soc. 124 6461
[5] Bekiari V and Lianos P 1998 Adv. Mater. 10 1455
[6] Weissman S I 1942 J. Chem. Phys. 10 214
[7] Feng J and Zhang H 2013 Chem. Soc. Rev. 42 387
[8] Lustig W P, Wang F, Teat S J, Hu Z, Gong Q and Li J 2016 Inorg. Chem. 55 7250
[9] Liu Q, Yu J and Hu J 2024 Chin. Phys. B 33 017204
[10] Cui Y, Xu H, Yue Y, Guo Z, Yu J, Chen Z, Gao J, Yang Y, Qian G and Chen B 2012 J. Am. Chem. Soc. 134 3979
[11] Wang Z, Schliehe C, Wang T, Nagaoka Y, Cao Y C, Bassett W A, Wu H, Fan H and Weller H 2011 J. Am. Chem. Soc. 133 14484
[12] Wang T, Li R, Quan Z, Loc W S, Bassett W A, Xu H, Cao Y C, Fang J and Wang Z 2015 Adv. Mater. 27 4544
[13] Guo S, Li Y, Mao Y, TaoW, Bu K, Fu T, Zhao C, Luo H, Hu Q, Zhu H, Shi E, Yang W, Dou L and Lü X 2022 Sci. Adv. 8 eadd1984
[14] Ma Z, Liu Z, Lu S, Wang L, Feng X, Yang D, Wang K, Xiao G, Zhang L, Redfern S A T and Zou B 2018 Nat. Commun. 9 4506
[15] Wu M, Liu H, Liu H, Lu T,Wang S, Niu G, Sui L, Bai F, Yang B,Wang K, Yang X and Zou B 2022 J. Phys. Chem. Lett. 13 2493
[16] Yang Y, Wang Y, Bai F Q, Li S X, Yang Q, Wang W, Yang X and Zou B 2024 Nano Lett. 24 9898
[17] Wang Y, Yang Y, Yang X and Zou B 2024 Sci. China Chem. 67 2890
[18] Yang Q, Yang X, Wang Y, Fei Y, Li F, Zheng H, Li K, Han Y, Hattori T, Zhu P, Zhao S, Fang L, Hou X, Liu Z, Yang B and Zou B 2024 Nat. Commun. 15 7778
[19] Wang Y, Yang X, Liu C, Liu Z, Fang Q, Bai F, Wang S, Hou X, Feng B, Chen B and Zou B 2022 Angew. Chem. Int. Ed. 134 e202210836
[20] Panyarat K, Ngamjarurojana A and Rujiwatra A 2019 J. Photoch. Photobio. A 377 167
[21] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
[22] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[23] Blöchl P E 1994 Phys. Rev. B 50 17953
[24] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[25] Wang Y, Lü X, Yang W, Wen T, Yang L, Ren X, Wang L, Lin Z and Zhao Y 2015 J. Am. Chem. Soc. 137 11144
[26] Jaffe A, Lin Y, Beavers C M, Voss J, Mao W L and Karunadasa H I 2016 ACS Cent. Sci. 2 201
[27] Zhang L, Liu C, Wang L, Liu C, Wang K and Zou B 2018 Angew. Chem. Int. Ed. 57 11213
[28] Li W, Probert M R, Kosa M, Bennett T D, Thirumurugan A, Burwood R P, Parinello M, Howard J A K and Cheetham A K 2012 J. Am. Chem. Soc. 134 11940
[29] Zhao F, Hu J, Guan D, Liu J, Zhang X, Ling H, Zhang Y and Liu Q 2023 Adv. Mater. 35 2304907
[30] Zhang P, Ke J, Tu D, Li J, Pei Y,Wang L, Shang X, Guan T, Lu S, Chen Z and Chen X 2022 Angew. Chem. Int. Ed. 61 e202112125
[31] Zhou B, Qi Z and Yan D 2022 Angew. Chem. Int. Ed. 61 e202208735
[32] Crowley J M, Tahir-Kheli J and Goddard W A 2016 J. Phys. Chem. Lett. 7 1198
[33] MengW,Wang X, Xiao Z,Wang J, Mitzi D B and Yan Y 2017 J. Phys. Chem. Lett. 8 2999
[34] Luo J, Wang X, Li S, Liu J, Guo Y, Niu G, Yao L, Fu Y, Gao L, Dong Q, Zhao C, Leng M, Ma F, Liang W, Wang L, Jin S, Han J, Zhang L, Etheridge J, Wang J, Yan Y, Sargent E H and Tang J 2018 Nature 563 541
[1] Superconductivity in titanium probed by AC magnetic susceptibility to 120 Gpa
Jing Song(宋静), Hongyu Liu(刘红玉), Xiancheng Wang(望贤成), and Changqing Jin(靳常青). Chin. Phys. B, 2025, 34(4): 047403.
[2] Structural and transport properties of (Mg,Fe)SiO3 at high temperature and high pressure
Shu Huang(黄澍), Zhiyang Xiang(向志洋), Shi He(何适), Luhan Yin(尹路寒), Shihe Zhang(张时赫), Chen Chen(陈晨), Kaihua He(何开华), and Cheng Lu(卢成). Chin. Phys. B, 2025, 34(3): 036102.
[3] Exploring Lifshitz transition and superconductivity in 3R-NbS2 under pressure
Kun Chen(陈坤), Xindeng Lv(吕心邓), Simin Li(李思敏), Yanping Huang(黄艳萍), and Tian Cui(崔田). Chin. Phys. B, 2025, 34(3): 037403.
[4] First-principles insights into the high-pressure stability and electronic characteristics of molybdenum nitride
Tao Wang(王涛), Ming-Hong Wen(温铭洪), Xin-Xin Zhang(张新欣), Wei-Hua Wang(王伟华), Jia-Mei Liu(刘佳美), Xu-Ying Wang(王旭颖), and Pei-Fang Li(李培芳). Chin. Phys. B, 2025, 34(3): 036104.
[5] Insights to unusual antiferromagnetic behavior and exchange coupling interactions in Mn23C6
Ze-Kun Yu(于泽坤), Chao Zhou(周超), Kuo Bao(包括), Zhao-Qing Wang(王兆卿), En-Xuan Li(李恩萱), Jin-Ming Zhu(朱金铭), Yuan Qin(秦源), Yu-Han Meng(孟钰涵), Pin-Wen Zhu(朱品文), Qiang Tao(陶强), and Tian Cui(崔田). Chin. Phys. B, 2025, 34(3): 037101.
[6] Novel high-temperature-resistant material SbLaO3 with superior hardness under high pressure
Haoqi Chen(陈浩琦), Haowen Jiang(姜皓文), Xuehui Jiang(姜雪辉), Jialin Wang(王佳琳), Chengyao Zhang(张铖瑶), Defang Duan(段德芳), Jing Dong(董晶), and Yanbin Ma(马艳斌). Chin. Phys. B, 2025, 34(2): 026201.
[7] Pressure generation under deformation in a large-volume press
Saisai Wang(王赛赛), Xinyu Zhao(赵鑫宇), Kuo Hu(胡阔), Bingtao Feng(丰丙涛), Xuyuan Hou(侯旭远), Yiming Zhang(张羿鸣), Shucheng Liu(刘书成), Yuchen Shang(尚宇琛), Zhaodong Liu(刘兆东), Mingguang Yao(姚明光), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2024, 33(9): 098104.
[8] First-principles study on stability and superconductivity of ternary hydride LaYHx (x =2, 3, 6 and 8)
Xiao-Zhen Yan(颜小珍), Xing-Zi Zhou(周幸姿), Chao-Fei Liu(刘超飞), Yin-Li Xu(徐寅力), Yi-Bin Huang(黄毅斌), Xiao-Wei Sheng(盛晓伟), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2024, 33(8): 086301.
[9] First-principles study of structural and electronic properties of multiferroic oxide Mn3TeO6 under high pressure
Xiao-Long Pan(潘小龙), Hao Wang(王豪), Lei Liu(柳雷), Xiang-Rong Chen(陈向荣), and Hua-Yun Geng(耿华运). Chin. Phys. B, 2024, 33(7): 076102.
[10] Pressure-induced magnetic phase and structural transition in SmSb2
Tao Li(李涛), Shuyang Wang(王舒阳), Xuliang Chen(陈绪亮), Chunhua Chen(陈春华), Yong Fang(房勇), and Zhaorong Yang(杨昭荣). Chin. Phys. B, 2024, 33(6): 066401.
[11] Unveiling the pressure-driven metal-semiconductor-metal transition in the doped TiS2
Jiajun Chen(陈佳骏), Xindeng Lv(吕心邓), Simin Li(李思敏), Yaqian Dan(但雅倩), Yanping Huang(黄艳萍), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(6): 067104.
[12] High-pressure study on calcium azide (Ca(N3)2): Bending of azide ions stabilizes the structure
Xiaoxin Wu(武晓鑫), Yingjian Wang(王颖健), Siqi Li(李思琪), Juncheng Lv(吕俊呈), Jingshu Wang(王婧姝), Lihua Yang(杨丽华), Qi Zhang(张旗), Yanqing Liu(刘艳清), Junkai Zhang(张俊凯), and Hongsheng Jia(贾洪声). Chin. Phys. B, 2024, 33(5): 056201.
[13] Robust Tc in element molybdenum up to 160 GPa
Xinyue Wu(吴新月), Shumin Guo(郭淑敏), Jianning Guo(郭鉴宁), Su Chen(陈诉), Yulong Wang(王煜龙), Kexin Zhang(张可欣), Chengcheng Zhu(朱程程), Chenchen Liu(刘晨晨), Xiaoli Huang(黄晓丽), Defang Duan(段德芳), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(4): 047406.
[14] Stability and melting behavior of boron phosphide under high pressure
Wenjia Liang(梁文嘉), Xiaojun Xiang(向晓君), Qian Li(李倩), Hao Liang(梁浩), and Fang Peng(彭放). Chin. Phys. B, 2024, 33(4): 046201.
[15] Pressure-induced structural transitions and metallization in ZrSe2
Yiping Gao(高一平), Chenchen Liu(刘晨晨), Can Tian(田灿), Chengcheng Zhu(朱程程), Xiaoli Huang(黄晓丽), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(12): 126104.
No Suggested Reading articles found!