Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 056501    DOI: 10.1088/1674-1056/acc933
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Thermal expansion behavior of sintered Nd-Fe-B magnets with different Co contents and orientations

Rui-Yang Meng(孟睿阳), Ji-Yuan Xu(徐吉元), Jia-Teng Zhang(张家滕), Jing Liu(刘静), Yi-Kun Fang(方以坤), Sheng-Zhi Dong(董生智), and Wei Li(李卫)
Division of Functional Material, Central Iron&Steel Research Institute, Beijing 100081, China
Abstract  The thermal expansion behavior of sintered Nd-Fe-B magnets is a crucial parameter for production and application. However, this aspect has not been thoroughly investigated. In this study, three different sintered Nd-Fe-B magnets with varying Co content (m Co=0, 6, 12 wt%) were prepared using the conventional powder metallurgy method, and four magnets oriented under different magnetic fields were prepared to compare. The thermal expansion behavior for the magnets was investigated using a linear thermal dilatometry in the temperature range of 20 ℃-500 ℃. It was found that, the coefficient of thermal expansion (CTE) increases with the increase of Co contents, while the anisotropy of thermal expansion decreases. The introduction of Co leads to continuous changes from negative to positive thermal expansion in the vertically oriented direction, which is important for the development of zero thermal expansion magnets. The thermal expansion of non-oriented magnets was found to be isotropic. Additionally, the anisotropy of thermal expansion increases with the increase of orientation degree. These results have important implications for the development of sintered Nd-Fe-B with controllable CTE.
Keywords:  thermal expansion      sintered Nd-Fe-B magnets      orientation      Co content  
Received:  22 November 2022      Revised:  03 March 2023      Accepted manuscript online:  31 March 2023
PACS:  65.40.De (Thermal expansion; thermomechanical effects)  
  75.50.Ww (Permanent magnets)  
  61.30.Gd (Orientational order of liquid crystals; electric and magnetic field effects on order)  
  77.80.bg (Compositional effects)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB3502900) and the National Natural Science Foundation of China (Grant No. 51871063), the Key Technology Research and Development Program of Shandong Province, China (Grant No. 2019JZZY020210), and the Major Projects in Inner Mongolia Autonomous Region, China.
Corresponding Authors:  Sheng-Zhi Dong     E-mail:  dong_shengzhi@163.com

Cite this article: 

Rui-Yang Meng(孟睿阳), Ji-Yuan Xu(徐吉元), Jia-Teng Zhang(张家滕), Jing Liu(刘静), Yi-Kun Fang(方以坤), Sheng-Zhi Dong(董生智), and Wei Li(李卫) Thermal expansion behavior of sintered Nd-Fe-B magnets with different Co contents and orientations 2023 Chin. Phys. B 32 056501

[1] Sagawa M, Fujimura S, Togawa N, Yamamoto H and Matsuura Y 1984 J. Appl. Phys. 55 2083
[2] Sagawa M, Fujimura S, Yamato H, et al. 1984 IEEE Trans. Magn. 20 1584
[3] Wang X C, Yue M, Zhang D T, Liu W Q and Zhu M G 2020 Rare Metals 39 1145
[4] Wang X, Zhao Z R, Liu F, Liu Y L, Wang G F, Zhu M G and Zhang X F 2020 Rare Metals 39 36
[5] GB/T 13560-2017. Sintered neodymium iron boron permanent magnets.
[6] Cheng DX 2017 Handbook of mechanical design, 6th edn. (Chemical Industry Press) p. 479 (in Chinese)
[7] GB/T 32286.1-2015 Soft magnetic alloys-Part 1: Nickel-iron alloys
[8] GB/T 14986.3-2018 Soft magnetic alloys-Part 3: Iron-cobalt alloys
[9] GB/T 14986.4-2018 Soft magnetic alloys-Part 4: Iron-chromium alloys
[10] GB/T 14986.5-2018 Soft magnetic alloys-Part 5: Iron-aluminum alloys
[11] Luo C, Qiu X, Wang H, et al. 2021 Journal of Manufacturing Processes. 64 323
[12] Sun T, Zhu J and Wang D 1979 Acta Metallurgica Sinica 15 58 (in Chinese)
[13] Ishimoto F, Yamamoto K and Takahashi W 1996 Journal of the Japan Society of Powder and Powder Metallurgy 43 940
[14] Buschow K 1986 Journal of the Less-Common Metals 118 349
[15] Givord D, Li H, Moreau J, et al. 1986 J. Magn. Magn. Mater. 54-57 445
[16] Yang N, Dennis K, Mccallum R, et al. 2005 J. Magn. Magn. Mater. 295 65
[17] Fujii H, Nagata H, Uwatoko Y, et al. 1987 J. Magn. Magn. Mater. 70 331
[18] Teplykh A E, Chukalkin Y, Lee S, Bogdanov S G, Kudrevatykh N V, Rosenfeld E V, Skryabin Yu N, Choi Y, Andreev A V and Pirogov A N 2013 J. Alloys Compd. 581 423
[19] Andreev A V 1990 Journal of the Less Common Metals. 162 33
[20] Qiao Y, Song Y, Xu M, et al. 2019 Inorganic Chemistry Frontiers. 6 3225
[21] Gao W, Wang S, Sun M, et al. 2020 Journal of the Chinese Society of Rare Earth 38 460 (in Chinese)
[22] Herbst J 1991 Rev. Modern Phys. 63 819
[23] Matsuura Y, Hirosawa S, Yamamoto H, et al. 1985 Appl. Phys. Lett. 46 308
[24] Herbst J and Yelon W 1987 J. Appl. Phys. 60 4224
[25] Popov A, Kolodkin D, Gaviko V, et al. 2017 Physics of Metals and Metallography 118 935
[1] Evaluating thermal expansion in fluorides and oxides: Machine learning predictions with connectivity descriptors
Yilin Zhang(张轶霖), Huimin Mu(穆慧敏), Yuxin Cai(蔡雨欣), Xiaoyu Wang(王啸宇), Kun Zhou(周琨), Fuyu Tian(田伏钰), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2023, 32(5): 056302.
[2] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[3] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[4] Phase-field-crystal simulation of nano-single crystal microcrack propagation under different orientation angles
Dunwei Peng(彭敦维), Yunpeng Zhang(张云鹏), Xiaolin Tian(田晓林), Hua Hou(侯华), and Yuhong Zhao(赵宇宏). Chin. Phys. B, 2023, 32(4): 044601.
[5] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[6] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[7] Optical second-harmonic generation of Janus MoSSe monolayer
Ce Bian(边策), Jianwei Shi(史建伟), Xinfeng Liu(刘新风), Yang Yang(杨洋), Haitao Yang(杨海涛), and Hongjun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097304.
[8] Effect of crystallographic orientations on transport properties of methylthiol-terminated permethyloligosilane molecular junction
Ming-Lang Wang(王明郎), Bo-Han Zhang(张博涵), Wen-Fei Zhang(张雯斐), Xin-Yue Tian(田馨月), Guang-Ping Zhang(张广平), and Chuan-Kui Wang(王传奎). Chin. Phys. B, 2022, 31(7): 077303.
[9] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[10] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[11] Zero thermal expansion in metal-organic framework with imidazole dicarboxylate ligands
Qilong Gao(高其龙), Yixin Jiao(焦怡馨), and Gang Li(李纲). Chin. Phys. B, 2022, 31(4): 046501.
[12] Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range
Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军). Chin. Phys. B, 2022, 31(4): 046502.
[13] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[14] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[15] Solid-to-molecular-orientational-hexatic melting induced by local environment determined defect proliferations
Zhanglin Hou(侯章林), Jieli Wang(王杰利), Ying Zeng(曾颖), Zhiyuan Zhao(赵志远), Xing Huang(黄兴), Kun Zhao(赵坤), and Fangfu Ye(叶方富). Chin. Phys. B, 2022, 31(12): 126401.
No Suggested Reading articles found!