Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 067504    DOI: 10.1088/1674-1056/adc6f5
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A design for an antiferromagnetic material based on self-assembly for information storage

Si-Yan Gao(高思妍)1, Yi-Feng Zheng(郑益峰)2, Shu-Qiang He(何述强)3, Haiping Fang(方海平)3,†, and Yue-Yu Zhang(张越宇)2,‡
1 School of Physics and School of Material Science and Engineering, East China University of Science and Technology, Shanghai 200237, China;
2 Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China;
3 School of Physics, East China University of Science and Technology, Shanghai 200237, China
Abstract  Antiferromagnetic (AFM) spintronics have sparked extensive research interest in the field of information storage due to the considerable advantages offered by antiferromagnets, including non-volatile data storage, higher storage density, and accelerating data processing. However, the manipulation and detection of internal AFM order in antiferromagnets hinders their applications in spintronic devices. Here, we proposed a design idea for an AFM material that is self-assembled from one-dimensional (1D) ferromagnetic (FM) chains. To validate this idea, we screened a two-dimensional (2D) self-assembled CrBr$_{2}$ antiferromagnet of an AFM semiconductor from a large amount of data. This 2D CrBr$_{2}$ antiferromagnet is composed of 1D FM CrBr$_{2}$ chains that are arranged in a staggered and parallel configuration. In this type of antiferromagnet, the write-data operation of information is achieved in 1D FM chains, followed by a self-assembly process driving the assembly of 1D FM chains into an antiferromagnet. These constituent 1D FM chains become decoupled by external perturbations, such as heat, pressure, strain, etc., thereby realizing the read-data operation of information. We anticipate that this antiferromagnet, composed of 1D FM chains, can be realized not only in the 1D to 2D system, but also is expected to expand to 2D to three-dimensional (3D) system, and even 1D to 3D system.
Keywords:  information storage      self-assembly      2D antiferromagnet      1D FM chains  
Received:  07 January 2025      Revised:  18 March 2025      Accepted manuscript online:  31 March 2025
PACS:  75.50.Ee (Antiferromagnetics)  
  81.16.Dn (Self-assembly)  
  72.80.Ga (Transition-metal compounds)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12435001, 12304006, and 12404265), the Natural Science Foundation of Shanghai, China (Grant No. 23JC1401400), the Fundamental Research Funds for the Central Universities of East China University, the Natural Science Foundation of WIUCAS (Grant No. WIUCASQD2023004), and the Natural Science Foundation of Wenzhou (Grant No. L2023005).
Corresponding Authors:  Haiping Fang, Yue-Yu Zhang     E-mail:  fanghaiping@sinap.ac.cn;zhangyy@wiucas.ac.cn

Cite this article: 

Si-Yan Gao(高思妍), Yi-Feng Zheng(郑益峰), Shu-Qiang He(何述强), Haiping Fang(方海平), and Yue-Yu Zhang(张越宇) A design for an antiferromagnetic material based on self-assembly for information storage 2025 Chin. Phys. B 34 067504

[1] Marti X, Fina I, Frontera C, Liu J, Wadley P, He Q, Paull R J, Clarkson J D, Kudrnovský J, Turek I, Kuneš J, Yi D, Chu J H, Nelson C T, You L, Arenholz E, Salahuddin S, Fontcuberta J, Jungwirth T and Ramesh R 2014 Nat. Mater. 13 367
[2] Chen X, Shi S, Shi G, Fan X, Song C, Zhou X, Bai H, Liao L, Zhou Y, Zhang H, Li A, Chen Y, Han X, Jiang S, Zhu Z, Wu H, Wang X, Xue D, Yang H and Pan F 2021 Nat. Mater. 20 800
[3] Dal Din A, Amin O J,Wadley P and Edmonds K W 2024 Npj Spintronics 2 25
[4] Néel L 1971 Science 174 985
[5] Jungwirth T, Marti X,Wadley P andWunderlich J 2016 Nat. Nanotechnol. 11 231
[6] Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005
[7] Šmejkal L, Mokrousov Y, Yan B and MacDonald A H 2018 Nat. Phys. 14 242
[8] Tokura Y and Kanazawa N 2020 Chem. Rev. 121 2857
[9] Huang K, Shao D F and Tsymbal E Y 2022 Nano Lett. 22 3349
[10] Nakatsuji S, Kiyohara N and Higo T 2015 Nature 527 212
[11] mejkal L, MacDonald A H, Sinova J, Nakatsuji S and Jungwirth T 2022 Nat. Rev. Mater. 7 482
[12] Yu X Z, Koshibae W, Tokunaga Y, Shibata K, Taguchi Y, Nagaosa N and Tokura Y 2018 Nature 564 95
[13] Han M G, Garlow J A, Liu Y, Zhang H, Li J, DiMarzio D, Knight M W, Petrovic C, Jariwala D and Zhu Y 2019 Nano Lett. 19 7859
[14] Augustin M, Jenkins S, Evans R F L, Novoselov K S and Santos E J G 2021 Nat. Commun. 12 185
[15] Cheong S W and Huang F T 2024 Npj Quantum Mater. 9 13
[16] Fedchenko O, Minár J, Akashdeep A, D’Souza SW, Vasilyev D, Tkach O, Odenbreit L, Nguyen Q, Kutnyakhov D, Wind N, Wenthaus L, Scholz M, Rossnagel K, Hoesch M, Aeschlimann M, Stadtmüller B, Kläui M, Schönhense G, Jungwirth T, Hellenes A B, Jakob G, Šmejkal L, Sinova J and Elmers H J 2024 Sci. Adv. 10 eadj4883
[17] Yan H, Feng Z, Qin P, Zhou X, Guo H,Wang X, Chen H, Zhang X,Wu H, Jiang C and Liu Z 2020 Adv. Mater. 32 1905603
[18] Zelezný J, Wadley P, Olejník K, Hoffmann A and Ohno H 2018 Nat. Phys. 14 220
[19] Han J, Cheng R, Liu L, Ohno H and Fukami S 2023 Nat. Mater. 22 684
[20] Ren Q, Lai K, Chen J, Yu X and Dai J 2023 Chin. Phys. B 32 027201
[21] Gong S J, Gong C, Sun Y Y, TongWY, Duan C G, Chu J H and Zhang X 2018 Proc. Natl. Acad. Sci. USA 115 8511
[22] Lv H, Niu Y, Wu X and Yang J 2021 Nano Lett. 21 7050
[23] Wang Y, Xu X, Zhao X, Ji W, Cao Q, Li S and Li Y 2022 Npj Comput. Mater. 8 218
[24] Šmejkal L, González-Hernández R, Jungwirth T and Sinova J 2020 Sci. Adv. 6 eaaz8809
[25] Šmejkal L, Sinova J and Jungwirth T 2022 Phys. Rev. X 12 031042
[26] Šmejkal L, Sinova J and Jungwirth T 2022 Phys. Rev. X 12 040501
[27] Krempaský J, Šmejkal L, D’souza S W, Hajlaoui M, Springholz G, Uhlírová K, Alarab F, Constantinou P C, Strocov V, Usanov D, Pudelko W R, González-Hernández R, Birk Hellenes A, Jansa Z, Reichlová H, Šobán Z, Gonzalez Betancourt R D, Wadley P, Sinova J, Kriegner D, Minár J, Dil J H and Jungwirth T 2024 Nature 626 517
[28] Li X and Yang J 2016 Natl. Sci. Rev. 3 365
[29] Rimmler B H, Pal B and Parkin S S P 2024 Nat. Rev. Mater. 10 109
[30] Takagi R, Hirakida R, Settai Y, Oiwa R, Takagi H, Kitaori A, Yamauchi K, Inoue H, Yamaura J I, Nishio-Hamane D, Itoh S, Aji S, Saito H, Nakajima T, Nomoto T, Arita R and Seki S 2025 Nat. Mater. 24 63
[31] Zhang Y Y, Gao W, Chen S, et al. 2015 Comput. Mater. Sci. 98 51
[32] Storn R and Price K 1997 J. Global Optim. 11 341
[33] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[34] Blöchl P E 1994 Phys. Rev. B 50 17953
[35] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[36] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[37] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[38] Tkatchenko A and Scheffler M 2009 Phys. Rev. Lett. 102 073005
[39] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[40] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[41] Kühne T D, Iannuzzi M, Del Ben M, et al. 2020 J. Chem. Phys. 152 194103
[42] Kan M, Adhikari S and Sun Q 2014 Phys. Chem. Chem. Phys. 61 4990
[43] Kan M, Zhou J, Sun Q, et al. 2013 J. Phys. Chem. Lett. 4 3382
[44] Lan M, Xiang G, Nie Y, et al. 2016 RSC Adv. 6 31758
[45] Liu L, Ren X, Xie J, et al. 2019 Appl. Surf. Sci. 480 300
[46] Liu L and Zhang X https://github.com/golddoushi/mcsolver
[47] Xiang R, Inoue T, Zheng Y, Kumamoto A, Qian Y, Sato Y, Liu M, Tang D, Gokhale D, Guo J, Hisama K, Yotsumoto S, Ogamoto T, Arai H, Kobayashi Y, Zhang H, Hou B, Anisimov A, Maruyama M, Miyata Y, Okada S, Chiashi S, Li Y, Kong J, Kauppinen E I, Ikuhara Y, Suenaga K and Maruyama S 2020 Science 367 537
[48] Yakobson B I and Gogotsi Y 2020 Science 367 506
[49] Xiang H, Lee C, Koo H J, Gong X and Whangbo M H 2013 Dalton Trans. 42 823
[50] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McguireMA, Cobden D H, YaoW, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270
[1] Interparticle-friction-induced anomalous colloid structure
Fuzhou Liu(刘福洲), Yu Ding(丁宇), Longfei Li(黎龙飞), Ke Cheng(程可), Fangfu Ye(叶方富), and Mingcheng Yang(杨明成). Chin. Phys. B, 2025, 34(1): 016401.
[2] Phoretic self-assembly of active colloidal molecules
Lijie Lei(雷李杰), Shuo Wang(王硕), Xinyuan Zhang(张昕源), Wenjie Lai(赖文杰), Jinyu Wu(吴晋宇), and Yongxiang Gao(高永祥). Chin. Phys. B, 2021, 30(5): 056112.
[3] Scalable preparation of water-soluble ink of few-layered WSe2 nanosheets for large-area electronics
Guoyu Xian(冼国裕), Jianshuo Zhang(张建烁), Li Liu(刘丽), Jun Zhou(周俊), Hongtao Liu(刘洪涛), Lihong Bao(鲍丽宏), Chengmin Shen(申承民), Yongfeng Li(李永峰), Zhihui Qin(秦志辉), Haitao Yang(杨海涛). Chin. Phys. B, 2020, 29(6): 066802.
[4] Adsorption behavior of triphenylene on Ru(0001) investigated by scanning tunneling microscopy
Li-Wei Jing(井立威), Jun-Jie Song(宋俊杰), Yu-Xi Zhang(张羽溪), Qiao-Yue Chen(陈乔悦), Kai-Kai Huang(黄凯凯), Han-Jie Zhang(张寒洁), Pi-Mo He(何丕模). Chin. Phys. B, 2019, 28(7): 076801.
[5] Phosphine-free synthesis of FeTe2 nanoparticles and self-assembly into tree-like nanoarchitectures
Hongyu Wang(王红宇), Min Wu(武敏), Yixuan Wang(王艺璇), Hao Wang(王浩), Xiaoli Huang(黄晓丽), Xinyi Yang(杨新一). Chin. Phys. B, 2019, 28(10): 106401.
[6] Effect of substrate type on Ni self-assembly process
Xuzhao Chai(柴旭朝), Boyang Qu(瞿博阳), Yuechao Jiao(焦岳超), Ping Liu(刘萍), Yanxia Ma(马彦霞), Fengge Wang(王凤歌), Xiaoquan Li(李晓荃), Xiangqian Fang(方向前), Ping Han(韩平), Rong Zhang(张荣). Chin. Phys. B, 2019, 28(1): 016102.
[7] Phase transition of a diblock copolymer and homopolymer hybrid system induced by different properties of nanorods
Xiao-bo Geng(耿晓波), Jun-xing Pan(潘俊星), Jin-jun Zhang(张进军), Min-na Sun(孙敏娜), Jian-yong Cen(岑建勇). Chin. Phys. B, 2018, 27(5): 058102.
[8] Hydrophobic nanochannel self-assembled by amphipathic Janus particles confined in aqueous nano-space
Gang Fang(方钢), Nan Sheng(盛楠), Tan Jin(金坦), Yousheng Xu(许友生), Hai Sun(孙海), Jun Yao(姚军), Wei Zhuang(庄巍), Haiping Fang(方海平). Chin. Phys. B, 2018, 27(3): 030505.
[9] Enhanced performance of a solar cell based on a layer-by-layer self-assembled luminescence down-shifting layer of core-shell quantum dots
Ni Liu(刘妮), Shu-Xin Li(李淑鑫), Ying-Chun Ye(叶迎春), Yan-Li Yao(姚延立). Chin. Phys. B, 2018, 27(12): 127303.
[10] Controllable preparation of tungsten/tungsten carbide nanowires or nanodots in nanostructured carbon with hollow macroporous core/mesoporous shell
Xiao-Na Ren(任晓娜), Min Xia(夏敏), Qing-Zhi Yan(燕青芝), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2017, 26(3): 038103.
[11] Improving self-assembly quality of colloidal crystal guided by statistical design of experiments
Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Haiming Zhang(张海明), Ling Liu(刘玲), Jichao Li(李继超), Dabao Yang(杨大宝). Chin. Phys. B, 2017, 26(3): 038105.
[12] Anisotropic formation mechanism and nanomechanics for the self-assembly process of cross-β peptides
Li Deng(邓礼), Yurong Zhao(赵玉荣), Peng Zhou(周鹏), Hai Xu(徐海), Yanting Wang(王延颋). Chin. Phys. B, 2017, 26(12): 128701.
[13] Holographic storage of three-dimensional image and data using photopolymer and polymer dispersed liquid crystal films
Hong-Yue Gao(高洪跃), Pan Liu(刘攀), Chao Zeng(曾超), Qiu-Xiang Yao(姚秋香), Zhiqiang Zheng(郑志强), Jicheng Liu(刘吉成), Huadong Zheng(郑华东), Ying-Jie Yu(于瀛洁), Zhen-Xiang Zeng(曾震湘), Tao Sun(孙涛). Chin. Phys. B, 2016, 25(9): 094205.
[14] Modulation of intra- and inter-sheet interactions in short peptide self-assembly by acetonitrile in aqueous solution
Li Deng(邓礼), Yurong Zhao(赵玉荣), Peng Zhou(周鹏), Hai Xu(徐海), Yanting Wang(王延颋). Chin. Phys. B, 2016, 25(12): 128704.
[15] Hierarchical processes in β -sheet peptide self-assembly from the microscopic to the mesoscopic level
Li Deng(邓礼) and Hai Xu(徐海). Chin. Phys. B, 2016, 25(1): 018701.
No Suggested Reading articles found!