Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 066203    DOI: 10.1088/1674-1056/adca1e
Special Issue: SPECIAL TOPIC — Structures and properties of materials under high pressure
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

Measurement of the eutectic point of Fe-C alloy under 5 Gpa

Ting Zhang(张亭)1, Xiuyan Wei(魏秀艳)2, Zuguang Hu(胡祖光)2, Jianyun Yang(杨建云)2, Duanwei He(贺端威)1,†, Khalid Nabulsi3, and Guodong (David) Zhan(詹国栋)3,‡
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2 Drilling Technology Services Company, GWDC, Panjin 124100, China;
3 Drilling Technology Division, EXPEC Advanced Research Center, Saudi Aramco, Dhahran 31311, Saudi Arabia
Abstract  The eutectic point is a critical parameter in the phase diagrams of solid-liquid equilibrium. In this study, high-pressure differential thermal analysis (HPDTA) was utilized to measure the melting temperatures of Fe-C alloy (3.4-4.2 wt.% C) under 5 GPa and to plot the liquidus temperature curves spanning from hypoeutectic to hypereutectic compositions. Our results indicate that under 5 GPa, the carbon content at the eutectic point of the Fe-C alloy decreases to 3.6-3.7 wt.% C, representing a reduction of approximately 0.6 wt.% C compared to the atmospheric pressure value (4.3 wt.% C). Concurrently, the eutectic temperature rises to 1195 ${^\circ}$C, showing an elevation of 48 ${^\circ}$C relative to the atmospheric pressure condition (1147 ${^\circ}$C). Microstructural analysis, x-ray diffraction (XRD), and hardness tests further corroborate these findings, demonstrating that high pressure significantly suppresses the solubility of carbon in $\gamma $-Fe, resulting in a decrease in the eutectic carbon content. Additionally, the hardness of the Fe-C alloy under 5 GPa is increased by more than 50% compared to that of the same type of Fe-C alloy under atmospheric pressure. This study provides essential experimental data for constructing high-pressure Fe-C phase diagrams and offers valuable insights for the design of high-performance Fe-based materials under extreme conditions
Keywords:  Fe-C alloy      eutectic point      high pressure and high temperature      high pressure differential thermal analysis  
Received:  07 March 2025      Revised:  03 April 2025      Accepted manuscript online:  08 April 2025
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  74.62.Bf (Effects of material synthesis, crystal structure, and chemical composition)  
  61.66.Dk (Alloys )  
  64.70.dj (Melting of specific substances)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2023YFA1406200).
Corresponding Authors:  Duanwei He, Guodong (David) Zhan     E-mail:  duanweihe@scu.edu.cn;guodong.zhan@aramco.com

Cite this article: 

Ting Zhang(张亭), Xiuyan Wei(魏秀艳), Zuguang Hu(胡祖光), Jianyun Yang(杨建云), Duanwei He(贺端威), Khalid Nabulsi, and Guodong (David) Zhan(詹国栋) Measurement of the eutectic point of Fe-C alloy under 5 Gpa 2025 Chin. Phys. B 34 066203

[1] He D W, He M, Kiminami, C S, Zhang F X, Xu Y F, Wang W K and Kuo K H 2001 J. Mater. Res. 16 910
[2] Superhard Materials and Pruducts Professional Committee of Chinese Society for Materials Research 2014 Selected papers on the 50th Anniversary of Superhard Materials and Products in China (Hangzhou: Zhejiang University Press) pp. 23-31, 73-93, 125-144 (in Chinese)
[3] Hirayama Y, Fujii T and Kurita K 1993 Geophys. Res. Lett. 20 2095
[4] Chabot N L, Campbell A J, McDonough W F, Draper D S, Agee C B, Humayun M, Watson H C, Cottrell E and Saslow S A 2008 Geochim. Cosmochim. Acta 72 4146
[5] Nakajima Y, Takahashi E, Suzuki T and Funakoshi K 2009 Phys. Earth Planet. Inter. 174 202
[6] Fei Y and Brosh E 2014 Earth Planet. Sci. Lett. 408 155
[7] Wang S, He D, Wang W and Lei L 2009 High Press. Res. 29 806
[8] Spreitzer D and Schenk J 2019 Steel Research Int. 90 1900108
[9] Wang J P, He D W, Li X, Zhang J W, Li Q, Wang Z W, Su Y Z, Tian Y, Yang J and Peng B 2002 Solid State Commun. 307 113805
[10] Tian Y, Wang J P, Zhang J W, Guan S X, Zhang L, Wu B B, Su Y S, Huang M Y, Zhou L and He D W 2020 Diamond Relat. Mater. 110 108158
[11] Dominic P, Mark R and Rian Dippenaar 2008 Mater. Sci. Eng. A 477 226
[12] Zhang R K, Guo R A, Li Q, Li S Q, Long H D and He D W 2024 Chin. Phys. B 33 108103
[13] He D W, Zhang F X, Zhang M, Liu R P, Qin Z C, Xu Y F and Wang W K 1997 Appl. Phys. Lett. 71 3811
[14] Panichkin A, Kenzhegulov A, Mamaeva A, Uskenbayeva A, Kshibekova B, Imbarova A and Alibekov Z 2023 J. Compos. Sci. 7 483
[15] Yu Y S and Qi M 2003 Mechanical Engineering Materials (Vol. 5) (Dalian: Dalian University of Technology Press) pp. 54-55 (in Chinese)
[16] Fried L E and Howard W M 2000 Phys. Rev. B 61 8734
[17] Jia X S, Hao Q G, Zuo X W, Chen N L and Rong Y H 2014 Mater. Sci. Eng. A 618 96
[18] Wiengmoon A, Pearce J T H and Chairuangsri T 2011 Mater. Chem. Phys. 125 739
[19] Ngqase M and Pan X 2020 J. Phys.: Conf. Ser. 1495 012023
[20] Zhang H W, Ohsaki S, Mitao S, Ohnuma M and Hono K 2006 Mater. Sci. Eng. A 421 191
[21] Zhang M X, Kelly P M and Gates 2001 J. Mater. Res. 36 3865
[22] Gil M L A, Santos A, Bethencourt M, García T, Fernández-Bastero S, Velo A and Gago-Duport L 2003 Anal. Chim. Acta 494 245
[23] Gasan H and Erturk F 2013 Metall. Mater. Trans. A 44 4993
[24] Sato S, Wagatsuma K, Ishikuro M, Kwon E P, Tashiro H and Suzuki S 2013 ISIJ Int. 53 673
[25] Panciu E, Anca D E and Chisamera 2016 Solid State Phenom. 254 255
[26] Zheng Z F, Meng X D, ZhangMX and He F S 2007 HotWork. Technol. 36 38 (in Chinese)
[1] Thermal conductivity of iron under the Earth's inner core pressure
Cui-E Hu(胡翠娥), Mu-Xin Jiao(焦亩鑫), Xue-Nan Yang(杨学楠), Zhao-Yi Zeng(曾召益), and Jun Chen(陈军). Chin. Phys. B, 2024, 33(10): 106501.
[2] High-pressure and high-temperature sintering of pure cubic silicon carbide: A study on stress-strain and densification
Jin-Xin Liu(刘金鑫), Fang Peng(彭放), Guo-Long Ma(马国龙), Wen-Jia Liang(梁文嘉), Rui-Qi He(何瑞琦), Shi-Xue Guan(管诗雪), Yue Tang(唐越), and Xiao-Jun Xiang(向晓君). Chin. Phys. B, 2023, 32(9): 098101.
[3] Prediction of superionic state in LiH2 at conditions enroute to nuclear fusion
Fude Li(李福德), Hao Wang(王豪), Jinlong Li(李津龙), and Huayun Geng(耿华运). Chin. Phys. B, 2023, 32(10): 106103.
[4] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[5] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[6] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[7] Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility
Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(6): 068102.
[8] Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain
Chao Yang(杨超), Jing Wang(王静), Junsheng Wang(王俊升), Yu Liu(刘瑜), Guomin Han(韩国民), Haifeng Song(宋海峰), and Houbing Huang(黄厚兵). Chin. Phys. B, 2021, 30(1): 018201.
[9] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[10] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[11] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[12] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[13] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[14] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[15] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
No Suggested Reading articles found!