Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 066101    DOI: 10.1088/1674-1056/adc661
SPECIAL TOPIC — Artificial intelligence and smart materials innovation: From fundamentals to applications Prev   Next  

General-purpose moment tensor potential for Ga-In liquid alloys towards large-scale molecular dynamics with ab initio accuracy

Kai-Jie Zhao(赵凯杰) and Zhi-Gong Song(宋智功)†
Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
Abstract  Liquid metals demonstrate significant potential for applications in thermal management and flexible electronic circuits, necessitating a comprehensive understanding of their transport properties for technological advancements. Experimental measurement of these properties presents challenges due to factors like cost, corrosion and impurity control. Consequently, accurate computational simulations become essential for predicting the physical properties of these materials. In this research, molecular dynamics (MD) simulations were employed to model several properties of gallium (Ga), indium (In) and Ga-In alloys, including lattice structural parameters, radial distribution functions (RDF), structure factors, self-diffusion coefficients and viscosity. Due to the difficulty of traditional interatomic potentials in capturing the short-range interactions directly related to the mechanical behavior of liquid atoms, machine-learning interatomic potentials (MLIPs) have been constructed to precisely describe the liquid metals Ga, In, and Ga-In alloys. This was achieved by utilizing the moment tensor potential (MTP) framework in combination with an active learning strategy. MTP was trained using a comprehensive database generated from DFT and MD simulations, which include a variety of crystal structures, point defects and liquid structures. The calculations of physical properties in this research have shown strong consistency with experimental data, demonstrating that the MTP can accurately describe the interatomic interactions between Ga-Ga, In-In and Ga-In. Our work has established a novel paradigm for investigating the physical properties of various liquid metal systems, offering valuable insights and references for future research.
Keywords:  gallium-indium alloys      machine-learning interatomic potentials      molecular dynamics simulation      viscosity  
Received:  21 January 2025      Revised:  27 February 2025      Accepted manuscript online:  28 March 2025
PACS:  61.25.Mv (Liquid metals and alloys)  
  66.20.Cy (Theory and modeling of viscosity and rheological properties, including computer simulation)  
  66.30.Fq (Self-diffusion in metals, semimetals, and alloys)  
  61.30.-v (Liquid crystals)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12202159 and 12472216).
Corresponding Authors:  Zhi-Gong Song     E-mail:  song_jnu@jiangnan.edu.cn

Cite this article: 

Kai-Jie Zhao(赵凯杰) and Zhi-Gong Song(宋智功) General-purpose moment tensor potential for Ga-In liquid alloys towards large-scale molecular dynamics with ab initio accuracy 2025 Chin. Phys. B 34 066101

[1] Lin Y, Genzer J and Dickey M D 2020 Adv. Sci. 7 2000192
[2] Chen S, Cui Z, Wang H, Wang X and Liu J 2023 Appl. Phys. Rev. 10 021308
[3] Chen S, Fan S, Chan H, Chan H, Qiao Z, Qi J, Wu Z, Yeo J C and Lim C T 2024 Adv. Funct. Mater. 34 2309989
[4] Chen S,Wang H Z, Liu T Y and Liu J 2023 Adv. Intell. Syst. 5 2200375
[5] Cole T, Khoshmanesh K and Tang S Y 2021 Adv. Intell. Syst. 3 2000275
[6] Huang Y D, Fu J W and Chen L M 2023 Chin. Phys. B 31 124701
[7] Zhang D, Duan Y R, Zheng P R, Ma Y J, Qian J P, Li Z C, Huang J, Jiang Y Y and Li H 2023 Chin. Phys. B 32 026801
[8] Bo G Y, Ren L, Xu X, Du Y and Dou S X 2018 Adv. Phys: X 3 1446359
[9] Prokhorenko V Y, Roshchupkin V V, Pokrasin M A, Prokhorenko S V and Kotov V V 2000 High Temp. 38 954
[10] Sawada T, Netchaev A, Ninokata H and Endo H. 2000 Prog. Nucl. Energy 37 313
[11] Sun X Y, Cui B X, Yuan B,Wang X L, Fan L L, Yu D H, He Z Z, Sheng L, Liu J and Lu J 2020 Adv. Funct. Materials. 30 2003359
[12] Chi M H, Liu Y K and Qin L 2023 Handbook of Integrated Circuit 9. Industry (Singapore: Springer Nature Singapore) pp. 883-894
[13] Wittkämper H, Maisel S, Moritz M, Grabau M, Görling A, Steinrück H P and Papp C 2022 Surf. Sci. 717 122008
[14] Predel B 1977 J. Chim. Phys. 74 827
[15] XieWJ, Allioux F M, Ou J Z, Miyako E, Tang S Y and Kalantar-Zadeh K 2021 Trends Biotechnol. 39 624
[16] Liu R X, Gong L J, Zhu X Y, Zhu S, Wu X C, Xue T Y, Yan L, Du J F and Gu Z J 2022 Adv. Healthcare Mater. 11 2102584
[17] Li G Q, Zhang M Y, Liu S H, Yuan M, Wu J J, Mei Y, Teng L J, Xu Z W, Guo J H, Li G L, Liu Z Y and Ma X 2023 Nat. Electron. 6 154
[18] Ge WS, Wang R, Zhu X Y, Zhang H C, Sun L F, Wang F, Li H K, Li Z H, Du X Y, Chen H Y, Zhang F, Shi H F, Hu H Q, Xi Y M, He J K, Hu L and Lan H B 2024 J. Mater. Chem. A 12 657
[19] Luo P J, Huang X, Yang H R and Chu S 2024 Rare Met. 43 6639
[20] Wang X, Lu C and Rao W 2021 Appl. Therm. Eng. 192 116937
[21] Moskalyk R R 2003 Miner. Eng. 16 921
[22] Alfantazi A M and Moskalyk R R 2003 Miner. Eng. 16 687
[23] Fang H L, Xiao T F, Lin J, Ning Z P, Qiong L, Xiao L H, Huang F, Wang W K, Xiao Q X, Lan X L and Chen H Y 2017 Hydrometallurgy 174 105
[24] Binder K, Horbach J, Kob W, Paul W and Varnik F 2004 Physicscondensed Matter 16 S429
[25] Gunsteren W F and Mark A E 1998 J. Chem. Phys. 108 6109
[26] Massobrio C, Du J C, Bernasconi M and Salmon P S 2015 Molecular Dynamics Simulations of Disordered Materials (Vol. 215) (Switzerland: Springer International Publishing) pp. 157-180
[27] Kwon D and Kim D 2024 J. Mater. Chem. A 12 23837
[28] Ryltsev R and Chtchelkatchev N 2022 J. Mol. Liq. 349 118181
[29] Deringer V L, Caro M A and Csányi G 2019 Adv. Mater. 31 1902765
[30] Bartók A P, Payne M C, Kondor R and Csányi G 2010 Phys. Rev. Lett. 104 136403
[31] Wang H, Zhang L F, Han J Q and EWN 2018 Comput. Phys. Commun. 228 178
[32] Drautz R 2019 Phys. Rev. B. 99 014104
[33] Shapeev A V 2016 Multiscale Model. Simul. 14 1153
[34] Thompson A P, Swiler L P, Trott C R, Foiles S M and Tucker G J 2015 J. Comput. Phys. 285 316
[35] Bian R J, He R, Pan E, Li Z F, Cao G M, Meng P, Chen J G, Liu Q, Zhong Z C, Li W W and Liu F C 2024 Science 385 57
[36] Niu H Y, Bonati L, Piaggi P M and Parrinello M 2020 Nat. Commun. 11 1
[37] Deringer V L, Bartók A P, Bernstein N, Wilkins D M, Ceriotti M and G Csányi 2021 Chem. Rev. 121 10073
[38] Zuo Y X, Chen C, Li X G, Deng Z, Chen Y M, Behler J, Csányi G, Shapeev A V, Thompson A P, Wood M A and Ong S P 2020 J. Phys. Chem. A 124 731
[39] Yang G Y, Hu Y X, Qiu Z J, Li B L, Zhou P, Li D F and Zhang G 2023 Appl. Phys. Lett. 122 082202
[40] Qiu Z J, Hu Y X, Li D, Hu T, Xiao H, Feng C B and Li D F 2023 Chin. Phys. B 32 054402
[41] Attarian S, Morgan D and Szlufarska I 2022 J. Mol. Liq. 368 120803
[42] Rybin N, Maksimov D, Zaikov Y and Shapeev A V 2024 J. Mol. Liq. 410 125402
[43] Lian J C, Wu H Y, Huang W Q, Hu W Y and Huang G F 2020 Phys. Rev. B 102 134209
[44] Hafner J 2008 J. Comput. Chem. 29 2044
[45] Novikov I S, Gubaev K, Podryabinkin E V and Shapeev A V 2021 Mach. Learn. Sci. Technol. 2 025002
[46] Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan Ray, Stevens M J, Tranchida J, Trott C and Plimpton S J 2022 Comput. Phys. Commun. 271 108171
[47] Arblaster J W 2018 Selected Values of the Crystallographic Properties of the Elements (1st edn.) (Ohio: ASM International) p. 264
[48] Ding J, Ma E, Asta M and Ritchie R O 2015 Sci. Rep. 5 17429
[49] Davis E A 1977 Endeavour 1 103
[50] Ding G H, Li X Y, Huang Z Y and Li M 2013 Phys. Chem. Liq. 51 255
[51] Sachdev S and Nelson D V 1984 Phys. Rev. Lett. 53 1947
[52] Mokshin A V, Khusnutdinoff R M, Novikov A G, Blagoveshchenskii N M and Puchkov A V 2015 J. Exp. Theor. Phys. 121 828
[53] Mudry S, Shtablavyi I and Liudkevych U 2017 Phys. Chem. Liquids 55 254
[54] Amon A, Chater P A, Vaughan G, Smith R and Salzmann C G 2023 J. Phys. Chem. C 127 16687
[55] Bellaire D, Kiepfer H,Münnemann K and Hasse H 2020 J. Chem. Eng. Data 65 793
[56] Blagoveshchenskii N, Novikov A, Puchkov A, Savostin V and Sobolev O 2015 EPJ Web of Conferences. 83 02018
[57] Petit J and Nachtrieb N H 1956 J. Chem. Phys. 24 1027
[58] Vadovic C J and Colver C P 1970 Phys. Rev. B 1 4850
[59] Careri G, Paoletti A and Vincentini M 1958 Nuovo Cim. 10 1088
[60] Patel A B and Bhatt N K 1951 AIP Conf. Proc. 1951 020003
[61] Battezzati L and Greer A L 1989 Acta Metall. 37 1791
[62] Balyakin I A, Yuryev A A, Filippov V V and Gelchinski B R 2022 Comput. Mater. Sci. 215 111802
[63] Assael M J, Armyra I J, Brillo J, Stankus S V,Wu J T andWakehamW A 2012 J. Phys. Chem. Ref. Data 41 033101
[64] Spells K E 1936 Proc. Phys. Soc. 48 299
[65] Tippelskirch H V 1976 Phys. Chem. 7 726
[66] Iida T, Morita Z I and Takeuchi S 1975 J. Jpn. Inst. Met. 39 1169
[67] Postovalov V G, Romanov E P, Kondrat’ev V P and Kononenko V I 2003 High Temp. 41 762
[68] Filippov V V, Belozerova A A, Shunyaev K Y and Gelchinski B R 2019 J. Alloys Compd. 789 66
[1] Depolymerization mechanism of microtubule revealed by nucleotide-dependent changes of longitudinal and lateral interactions
Bingbing Zhang(张冰冰), Ziling Huo(霍子玲), Jiaxi Li(李佳希), Jingyu Qin(覃静宇), and Yizhao Geng(耿轶钊). Chin. Phys. B, 2025, 34(6): 068702.
[2] Shear viscosity of an ultracold Fermi gas in the BCS-BEC crossover
Jing Min(闵靖), Xiangchuan Yan(严祥传), Da-Li Sun(孙大立), Lu Wang(王璐), Xin Xie(谢馨), Xizhi Wu(吴熙至), Shi-Guo Peng(彭世国), and Kaijun Jiang(江开军). Chin. Phys. B, 2025, 34(5): 053103.
[3] Elastic-plastic behavior of nickel-based single crystal superalloys with γ-γ' phases based on molecular dynamics simulations
Jing-Zhao Cao(曹景昭), Yun-Guang Zhang(张云光), Zhong-Kui Zhang(张中奎), Jiang-Peng Fan(范江鹏), Qi Dong(董琪), and Ying-Ying Fang(方盈盈). Chin. Phys. B, 2025, 34(4): 046204.
[4] Molecular dynamics evaluation of self-diffusion coefficients in two-dimensional dusty plasmas
Muhammad Asif Shakoori, Misbah Khan, Haipeng Li(李海鹏), Aamir Shahzad, Maogang He(何茂刚), and Syed Ali Raza. Chin. Phys. B, 2025, 34(4): 045202.
[5] Molecular dynamics simulations of collision cascades in polycrystalline tungsten
Lixia Liu(刘丽霞), Mingxuan Jiang(蒋明璇), Ning Gao(高宁), Yangchun Chen(陈阳春), Wangyu Hu(胡望宇), and Hiuqiu Deng(邓辉球). Chin. Phys. B, 2025, 34(4): 046103.
[6] Structural and transport properties of (Mg,Fe)SiO3 at high temperature and high pressure
Shu Huang(黄澍), Zhiyang Xiang(向志洋), Shi He(何适), Luhan Yin(尹路寒), Shihe Zhang(张时赫), Chen Chen(陈晨), Kaihua He(何开华), and Cheng Lu(卢成). Chin. Phys. B, 2025, 34(3): 036102.
[7] Plastic deformation mechanism of γ-phase U-Mo alloy studied by molecular dynamics simulations
Chang Wang(王畅), Peng Peng(彭芃), and Wen-Sheng Lai(赖文生). Chin. Phys. B, 2025, 34(1): 018101.
[8] Determination of liquid viscosity based on dual-frequency-band particle tracking
Lihua Yan(闫丽华), Boyin Xue(薛博引), Yuanji Li(李渊骥), Jinxia Feng(冯晋霞), Xingkang Wu(武兴康), and Kuanshou Zhang(张宽收). Chin. Phys. B, 2024, 33(9): 090701.
[9] Influence of temperature, stress, and grain size on behavior of nano-polycrystalline niobium
Yu-Ping Yan(晏玉平), Liu-Ting Zhang(张柳亭), Li-Pan Zhang(张丽攀), Gang Lu(芦刚), and Zhi-Xin Tu(涂志新). Chin. Phys. B, 2024, 33(7): 076201.
[10] Factors resisting protein adsorption on hydrophilic/hydrophobic self-assembled monolayers terminated with hydrophilic hydroxyl groups
Dangxin Mao(毛党新), Yuan-Yan Wu(吴园燕), and Yusong Tu(涂育松). Chin. Phys. B, 2024, 33(6): 068701.
[11] Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
Gang Yang(杨刚), Ting Zheng(郑庭), Qihao Cheng(程启昊), and Huichen Zhang(张会臣). Chin. Phys. B, 2024, 33(4): 044701.
[12] Electronic effects on radiation damage in α-iron: A molecular dynamics study
Lin Jiang(江林), Min Li(李敏), Bao-Qin Fu(付宝勤), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2024, 33(3): 036103.
[13] Unveiling the early stage evolution of local atomic structures in the crystallization process of a metallic glass
Lin Ma(马琳), Xiao-Dong Yang(杨晓东), Feng Yang(杨锋), Xin-Jia Zhou(周鑫嘉), and Zhen-Wei Wu(武振伟). Chin. Phys. B, 2024, 33(3): 036402.
[14] Molecular dynamics study of primary radiation damage in TiVTa concentrated solid-solution alloy
Yong-Peng Zhao(赵永鹏), Yan-Kun Dou(豆艳坤), Xin-Fu He(贺新福), Han Cao(曹晗),Lin-Feng Wang(王林枫), Hui-Qiu Deng(邓辉球), and Wen Yang(杨文). Chin. Phys. B, 2024, 33(3): 036104.
[15] Unravelling biotoxicity of graphdiyne: Molecular dynamics simulation of the interaction between villin headpiece protein and graphdiyne
Bei-Wei Zhang(张贝薇), Bing-Quan Zhang(张兵权), Zhi-Gang Shao(邵志刚), and Xianqiu Wu(吴先球). Chin. Phys. B, 2024, 33(11): 118102.
No Suggested Reading articles found!