General-purpose moment tensor potential for Ga-In liquid alloys towards large-scale molecular dynamics with ab initio accuracy
Kai-Jie Zhao(赵凯杰) and Zhi-Gong Song(宋智功)†
Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
Abstract Liquid metals demonstrate significant potential for applications in thermal management and flexible electronic circuits, necessitating a comprehensive understanding of their transport properties for technological advancements. Experimental measurement of these properties presents challenges due to factors like cost, corrosion and impurity control. Consequently, accurate computational simulations become essential for predicting the physical properties of these materials. In this research, molecular dynamics (MD) simulations were employed to model several properties of gallium (Ga), indium (In) and Ga-In alloys, including lattice structural parameters, radial distribution functions (RDF), structure factors, self-diffusion coefficients and viscosity. Due to the difficulty of traditional interatomic potentials in capturing the short-range interactions directly related to the mechanical behavior of liquid atoms, machine-learning interatomic potentials (MLIPs) have been constructed to precisely describe the liquid metals Ga, In, and Ga-In alloys. This was achieved by utilizing the moment tensor potential (MTP) framework in combination with an active learning strategy. MTP was trained using a comprehensive database generated from DFT and MD simulations, which include a variety of crystal structures, point defects and liquid structures. The calculations of physical properties in this research have shown strong consistency with experimental data, demonstrating that the MTP can accurately describe the interatomic interactions between Ga-Ga, In-In and Ga-In. Our work has established a novel paradigm for investigating the physical properties of various liquid metal systems, offering valuable insights and references for future research.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12202159 and 12472216).
Corresponding Authors:
Zhi-Gong Song
E-mail: song_jnu@jiangnan.edu.cn
Cite this article:
Kai-Jie Zhao(赵凯杰) and Zhi-Gong Song(宋智功) General-purpose moment tensor potential for Ga-In liquid alloys towards large-scale molecular dynamics with ab initio accuracy 2025 Chin. Phys. B 34 066101
[1] Lin Y, Genzer J and Dickey M D 2020 Adv. Sci. 7 2000192 [2] Chen S, Cui Z, Wang H, Wang X and Liu J 2023 Appl. Phys. Rev. 10 021308 [3] Chen S, Fan S, Chan H, Chan H, Qiao Z, Qi J, Wu Z, Yeo J C and Lim C T 2024 Adv. Funct. Mater. 34 2309989 [4] Chen S,Wang H Z, Liu T Y and Liu J 2023 Adv. Intell. Syst. 5 2200375 [5] Cole T, Khoshmanesh K and Tang S Y 2021 Adv. Intell. Syst. 3 2000275 [6] Huang Y D, Fu J W and Chen L M 2023 Chin. Phys. B 31 124701 [7] Zhang D, Duan Y R, Zheng P R, Ma Y J, Qian J P, Li Z C, Huang J, Jiang Y Y and Li H 2023 Chin. Phys. B 32 026801 [8] Bo G Y, Ren L, Xu X, Du Y and Dou S X 2018 Adv. Phys: X 3 1446359 [9] Prokhorenko V Y, Roshchupkin V V, Pokrasin M A, Prokhorenko S V and Kotov V V 2000 High Temp. 38 954 [10] Sawada T, Netchaev A, Ninokata H and Endo H. 2000 Prog. Nucl. Energy 37 313 [11] Sun X Y, Cui B X, Yuan B,Wang X L, Fan L L, Yu D H, He Z Z, Sheng L, Liu J and Lu J 2020 Adv. Funct. Materials. 30 2003359 [12] Chi M H, Liu Y K and Qin L 2023 Handbook of Integrated Circuit 9. Industry (Singapore: Springer Nature Singapore) pp. 883-894 [13] Wittkämper H, Maisel S, Moritz M, Grabau M, Görling A, Steinrück H P and Papp C 2022 Surf. Sci. 717 122008 [14] Predel B 1977 J. Chim. Phys. 74 827 [15] XieWJ, Allioux F M, Ou J Z, Miyako E, Tang S Y and Kalantar-Zadeh K 2021 Trends Biotechnol. 39 624 [16] Liu R X, Gong L J, Zhu X Y, Zhu S, Wu X C, Xue T Y, Yan L, Du J F and Gu Z J 2022 Adv. Healthcare Mater. 11 2102584 [17] Li G Q, Zhang M Y, Liu S H, Yuan M, Wu J J, Mei Y, Teng L J, Xu Z W, Guo J H, Li G L, Liu Z Y and Ma X 2023 Nat. Electron. 6 154 [18] Ge WS, Wang R, Zhu X Y, Zhang H C, Sun L F, Wang F, Li H K, Li Z H, Du X Y, Chen H Y, Zhang F, Shi H F, Hu H Q, Xi Y M, He J K, Hu L and Lan H B 2024 J. Mater. Chem. A 12 657 [19] Luo P J, Huang X, Yang H R and Chu S 2024 Rare Met. 43 6639 [20] Wang X, Lu C and Rao W 2021 Appl. Therm. Eng. 192 116937 [21] Moskalyk R R 2003 Miner. Eng. 16 921 [22] Alfantazi A M and Moskalyk R R 2003 Miner. Eng. 16 687 [23] Fang H L, Xiao T F, Lin J, Ning Z P, Qiong L, Xiao L H, Huang F, Wang W K, Xiao Q X, Lan X L and Chen H Y 2017 Hydrometallurgy 174 105 [24] Binder K, Horbach J, Kob W, Paul W and Varnik F 2004 Physicscondensed Matter 16 S429 [25] Gunsteren W F and Mark A E 1998 J. Chem. Phys. 108 6109 [26] Massobrio C, Du J C, Bernasconi M and Salmon P S 2015 Molecular Dynamics Simulations of Disordered Materials (Vol. 215) (Switzerland: Springer International Publishing) pp. 157-180 [27] Kwon D and Kim D 2024 J. Mater. Chem. A 12 23837 [28] Ryltsev R and Chtchelkatchev N 2022 J. Mol. Liq. 349 118181 [29] Deringer V L, Caro M A and Csányi G 2019 Adv. Mater. 31 1902765 [30] Bartók A P, Payne M C, Kondor R and Csányi G 2010 Phys. Rev. Lett. 104 136403 [31] Wang H, Zhang L F, Han J Q and EWN 2018 Comput. Phys. Commun. 228 178 [32] Drautz R 2019 Phys. Rev. B. 99 014104 [33] Shapeev A V 2016 Multiscale Model. Simul. 14 1153 [34] Thompson A P, Swiler L P, Trott C R, Foiles S M and Tucker G J 2015 J. Comput. Phys. 285 316 [35] Bian R J, He R, Pan E, Li Z F, Cao G M, Meng P, Chen J G, Liu Q, Zhong Z C, Li W W and Liu F C 2024 Science 385 57 [36] Niu H Y, Bonati L, Piaggi P M and Parrinello M 2020 Nat. Commun. 11 1 [37] Deringer V L, Bartók A P, Bernstein N, Wilkins D M, Ceriotti M and G Csányi 2021 Chem. Rev. 121 10073 [38] Zuo Y X, Chen C, Li X G, Deng Z, Chen Y M, Behler J, Csányi G, Shapeev A V, Thompson A P, Wood M A and Ong S P 2020 J. Phys. Chem. A 124 731 [39] Yang G Y, Hu Y X, Qiu Z J, Li B L, Zhou P, Li D F and Zhang G 2023 Appl. Phys. Lett. 122 082202 [40] Qiu Z J, Hu Y X, Li D, Hu T, Xiao H, Feng C B and Li D F 2023 Chin. Phys. B 32 054402 [41] Attarian S, Morgan D and Szlufarska I 2022 J. Mol. Liq. 368 120803 [42] Rybin N, Maksimov D, Zaikov Y and Shapeev A V 2024 J. Mol. Liq. 410 125402 [43] Lian J C, Wu H Y, Huang W Q, Hu W Y and Huang G F 2020 Phys. Rev. B 102 134209 [44] Hafner J 2008 J. Comput. Chem. 29 2044 [45] Novikov I S, Gubaev K, Podryabinkin E V and Shapeev A V 2021 Mach. Learn. Sci. Technol. 2 025002 [46] Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan Ray, Stevens M J, Tranchida J, Trott C and Plimpton S J 2022 Comput. Phys. Commun. 271 108171 [47] Arblaster J W 2018 Selected Values of the Crystallographic Properties of the Elements (1st edn.) (Ohio: ASM International) p. 264 [48] Ding J, Ma E, Asta M and Ritchie R O 2015 Sci. Rep. 5 17429 [49] Davis E A 1977 Endeavour 1 103 [50] Ding G H, Li X Y, Huang Z Y and Li M 2013 Phys. Chem. Liq. 51 255 [51] Sachdev S and Nelson D V 1984 Phys. Rev. Lett. 53 1947 [52] Mokshin A V, Khusnutdinoff R M, Novikov A G, Blagoveshchenskii N M and Puchkov A V 2015 J. Exp. Theor. Phys. 121 828 [53] Mudry S, Shtablavyi I and Liudkevych U 2017 Phys. Chem. Liquids 55 254 [54] Amon A, Chater P A, Vaughan G, Smith R and Salzmann C G 2023 J. Phys. Chem. C 127 16687 [55] Bellaire D, Kiepfer H,Münnemann K and Hasse H 2020 J. Chem. Eng. Data 65 793 [56] Blagoveshchenskii N, Novikov A, Puchkov A, Savostin V and Sobolev O 2015 EPJ Web of Conferences. 83 02018 [57] Petit J and Nachtrieb N H 1956 J. Chem. Phys. 24 1027 [58] Vadovic C J and Colver C P 1970 Phys. Rev. B 1 4850 [59] Careri G, Paoletti A and Vincentini M 1958 Nuovo Cim. 10 1088 [60] Patel A B and Bhatt N K 1951 AIP Conf. Proc. 1951 020003 [61] Battezzati L and Greer A L 1989 Acta Metall. 37 1791 [62] Balyakin I A, Yuryev A A, Filippov V V and Gelchinski B R 2022 Comput. Mater. Sci. 215 111802 [63] Assael M J, Armyra I J, Brillo J, Stankus S V,Wu J T andWakehamW A 2012 J. Phys. Chem. Ref. Data 41 033101 [64] Spells K E 1936 Proc. Phys. Soc. 48 299 [65] Tippelskirch H V 1976 Phys. Chem. 7 726 [66] Iida T, Morita Z I and Takeuchi S 1975 J. Jpn. Inst. Met. 39 1169 [67] Postovalov V G, Romanov E P, Kondrat’ev V P and Kononenko V I 2003 High Temp. 41 762 [68] Filippov V V, Belozerova A A, Shunyaev K Y and Gelchinski B R 2019 J. Alloys Compd. 789 66
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.