Abstract As an independent thermodynamic parameter, pressure significantly influences interatomic distances, leading to an increase in material density. In this work, we employ the CALYPSO structure search and density functional theory calculations to explore the structural phase transitions and electronic properties of calcium-sulfur compounds (CaS, where , 1/3, 1/2, 2/3, 3/4, 4/5) under 0-1200 GPa. The calculated formation enthalpies suggest that CaS compounds undergo multiple phase transitions and eventually decompose into elemental Ca and S, challenging the traditional view that pressure stabilizes and densifies compounds. The analysis of formation enthalpy indicates that an increase in pressure leads to a rise in internal energy and the term, resulting in thermodynamic instability. Bader charge analysis reveals that this phenomenon is attributed to a decrease in charge transfer under high pressure. The activation of Ca-3d orbitals is significantly enhanced under pressure, leading to competition with Ca-4s orbitals and S-3p orbitals. This may cause the formation enthalpy minimum on the convex hull to shift sequentially from CaS to CaS, then to CaS and CaS, and finally back to CaS. These findings provide critical insights into the behavior of alkaline-earth metal sulfides under high pressure, with implications for the synthesis and application of novel materials under extreme conditions and for understanding element distribution in planetary interiors.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974154 and 12304278), the Taishan Scholars Special Funding for Construction Projects (Grant No. tstp20230622), the Natural Science Foundation of Shandong Province (Grant Nos. ZR2022MA004, ZR2023QA127, and ZR2024QA121), and the Special Foundation of Yantai for Leading Talents above Provincial Level.
Corresponding Authors:
Jian-Fu Li, Xiao-Li Wang
E-mail: jianfuli@ytu.edu.cn;xlwang@ytu.edu.cn
Cite this article:
Yang Lv(吕阳), Jian-Fu Li(李建福), Zhao-Bin Zhang(张钊彬), Yong Liu(刘勇), Jia-Nan Yuan(袁嘉男), Jia-Ni Lin(林佳妮), and Xiao-Li Wang(王晓丽) Stoichiometric change and solid decomposition in Ca-S compounds under high pressure 2025 Chin. Phys. B 34 046202
[1] Miao M, Sun Y, Zurek E and Lin H 2020 Nat. Rev. Chem. 4 508 [2] Zhai H, Xu R, Dai J, Ma X, Yu X, Li Q and Ma Y 2022 J. Am. Chem. Soc. 144 21640 [3] Li J, Geng Y, Xu Z, Zhang P, Garbarino G, Miao M, Hu Q and Wang X 2022 JACS Au 3 402 [4] Hu P, Peng J, Xie X, Wen M, Zhang X, Wu F and Dong H 2022 Chin. Phys. B 31 036301 [5] Xie H, Wang J, Wang L, Yan Y, Guo J, Gao Q, Chao M, Liang E and Ren X 2022 Chin. Phys. B 31 076101 [6] Chen B, Tian M, Zhang J, Li B, Xiao Y, Chow P, Kenney-Benson C, Deng H, Zhang J,Ding Y and Mao H K, et al. 2022 Phys. Rev. Lett. 129 016401 [7] Li B, Liu H, Zhong X and Liu G 2022 Phys. Rev. Res. 4 033082 [8] Zhu L, Liu H, Pickard C J, Zou G and Ma Y 2014 Nat. Chem. 6 644 [9] Dubrovinsky L, Khandarkhaeva S, Fedotenko T, Laniel, Bykov M, Giacobbe, Lawrence Bright E, Sedmak, Chariton, Prakapenka, Ponomareva A, Smirnova E, Belov M P, Tasádi F, Shulumba, Trybel, Abrikosov I A and Dubrovinskaia N 2022 Nature 605 274 [10] Mikhailova O L, Mochalov M A, Sokolova A I and Urlin V D 2000 High Temperature 38 210 [11] Ragan III C E 1980 Phys. Rev. A 21 458 [12] Anzellini S and Boccato S 2020 Crystals 10 459 [13] Liu J, Tao Y, Fan C, Wu B, Tang Q and Lei L 2022 Chin. Phys. B 31 037801 [14] Li F, Zhang X, Fu Y, Wang Y, Bergara A and Yang G 2021 J. Phys. Chem. Lett. 12 4203 [15] Rahm M, Cammi R, Ashcroft NWand Hoffmann R 2019 J. Am. Chem. Soc. 141 10253 [16] Khenata R, Sahnoun M, Baltache, Rérat, Rached, Driz M and Bouhafs B 2006 Physica B 371 1 [17] Potzel O and Taubmann G 2011 J. Solid State Chem. 184 1079 [18] Varshney D, Kaurav N, Sharma U and Singh R K 2008 J. Phys. Chem. Solids 69 60 [19] Boucenna S, Medkour Y, Louail L, Boucenna M, Hachemi A and Roumili A 2013 Comput. Mater. Sci. 68 325 [20] Nagata K and Goto K S 1974 Metallurgical Transactions 5 899 [21] Egami A, Onoye T and Narita K 1981 Transactions of the Japan Institute of Metals 22 399 [22] Ali R, Mohammad S, Ullah H, Khan S A, Uddin H, Khan M and Khan N U 2013 Physica B 410 93 [23] Rao R P 1986 J. Mater. Sci. 21 3357 [24] Naeemullah, Murtaza G, Khenata R, Safeer A, Alahmed Z A and Bin Omran S 2014 Comput. Mater. Sci. 91 43 [25] Yasuhiro Nakao 1980 J. Phys. Soc. Japan 48 534 [26] Hiroaki Nakamura and Gunji Koki 1980 Transactions of the Japan Institute of Metals 21 375 [27] Yu Q, Li Q, Tu L, Zhou Y, Zhu H, Zhang Q, Liu M and Sun Y 2023 Chem. Eng. J. 477 147085 [28] Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116 [29] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063 [30] Gao B, Gao P, Lu S, Lv J, Wang Y and Ma Y 2019 Sci. Bull. 64 301 [31] Lv Y, Li J, Zhang Z, Geng Y, Xu Z, Liu Y, Yuan J, Wang Q and Wang X 2024 Phys. Chem. Chem. Phys. 26 10399 [32] Xu Z, Li J, Geng Y, Zhang Z, Lv Y, Zhang C, Wang Q and Wang X 2023 Chin. Phys. Lett. 40 076201 [33] Geng Y, Li J, Zhang Z, Lv Y, Lu M, Zhu M, Liu Y, Yuan J, Hu Q and Wang X 2024 Matter and Radiation at Extremes 9 067804 [34] Geng Y, Li J, Zhang Z, Lv Y, Xu Z, Liu Y, Yuan J, Wang Q and Wang X 2023 Phys. Chem. Chem. Phys. 25 23448 [35] Liu Y, Li J, Geng Y, Xu Z, Lv Y, Zhang Z, Yuan J and Wang X 2024 Physica B 681 415846 [36] Zhang Z, Li J, Lv Y, Geng Y, Xu Z, Liu Y, Yuan J and Wang X 2024 Comput. Mater Sci. 231 112593 [37] Xu Z, Rui Q, Geng Y, Li J, Wang Q and Wang X 2022 Europhys. Lett. 140 16003 [38] Wang Y and Perdew J P 1991 Phys. Rev. B 43 891 [39] Kresse G and Furthmü J 1996 Phys. Rev. B 54 11169 [40] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 386 [41] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244 [42] Blochl P E 1994 Phys. Rev. B 50 17953 [43] Ozturk K, Zhong Y U, Chen L Q, Wolverton C, Sofo J O and Liu Z K 2005 Metallurgical and Materials Transactions A 36 5 [44] Tang W, Sanville E and Henkelman G 2009 J. Phys. Condens. Matter 21 084204 [45] Deringer V, Tchougréeff A L and Dronskowski R 2011 J. Phys. Chem. A 115 5461 [46] Maintz S, Deringer V L, Tchougréeff A L and Dronskowski R 2016 J. Comput. Chem. 37 1030 [47] Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272 [48] Feng H, Wang S and Wu B 2022 J. Phys. Conf. Ser. 2148 012015 [49] Wang S, Lu W, Liu S, Zhou M, Gao P, Wang H, Lv J, Gou H, Liu G, Liu H, Wang Y and Ma Y 2021 Phys. Rev. B 104 054117
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.