Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 067202    DOI: 10.1088/1674-1056/adc65c
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Planar Hall effect without chiral anomaly in layered topological semimetal candidate GaGeTe

Cheng Wang(王成)1, Ankang Zhu(朱安康)1, Ziyi Fan(范子怡)1, Peng Huang(黄鹏)1, Xue Liu(刘学)1, Xuegang Chen(陈学刚)1, Yuyan Han(韩玉岩)2,†, Zheng Chen(陈正)2, Xiangde Zhu(朱相德)2, Mingliang Tian(田明亮)2,3, and Wenshuai Gao(高文帅)1,‡
1 Information Materials and Intelligent Sensing Laboratory of Anhui Province, Center of Free Electron Laser & High Magnetic Field, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China;
2 Anhui Key Laboratory of Low-energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China;
3 School of Physics and Optoelectronics Engineering, Anhui University, Hefei 230601, China
Abstract  We systematically investigate the planar transport properties of the two-dimensional layered compound GaGeTe. The results reveal distinct anisotropies in both the longitudinal and planar Hall resistances as the magnetic field is rotated within the plane, which are well-captured by the planar Hall effect (PHE) model. Further analysis indicates that the primary contribution to the PHE in GaGeTe arises from its ferromagnetic component and anisotropic orbital resistance, rather than topologically nontrivial chiral anomaly. This work deepens our understanding of the PHE mechanism and offers valuable insights for the development of planar Hall sensors based on two-dimensional materials.
Keywords:  planar Hall effect      anisotropic orbital resistance      ferromagnetic component      chiral anomaly  
Received:  30 October 2024      Revised:  22 January 2025      Accepted manuscript online:  28 March 2025
PACS:  72.15.Gd (Galvanomagnetic and other magnetotransport effects)  
  61.82.Bg (Metals and alloys)  
  75.50.Cc (Other ferromagnetic metals and alloys)  
  85.30.Fg (Bulk semiconductor and conductivity oscillation devices (including Hall effect devices, space-charge-limited devices, and Gunn effect devices))  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2023YFA1406500), the National Natural Science Foundation of China (Grant Nos. U19A2093 and 11904002), the Excellent Youth Project of the Natural Science Foundation of Anhui Province, China (Grant No. 2308085Y07), and the Anhui Provincial Major Science and Technology Project (Grant No. s202305a12020005).
Corresponding Authors:  Yuyan Han, Wenshuai Gao     E-mail:  yyhan@hmfl.ac.cn;gwsh@ahu.edu.cn

Cite this article: 

Cheng Wang(王成), Ankang Zhu(朱安康), Ziyi Fan(范子怡), Peng Huang(黄鹏), Xue Liu(刘学), Xuegang Chen(陈学刚), Yuyan Han(韩玉岩), Zheng Chen(陈正), Xiangde Zhu(朱相德), Mingliang Tian(田明亮), and Wenshuai Gao(高文帅) Planar Hall effect without chiral anomaly in layered topological semimetal candidate GaGeTe 2025 Chin. Phys. B 34 067202

[1] Goli P, Khan J, Wickramaratne D, Lake R K and Balandin A A 2012 Nano. Lett. 12 5941
[2] Yang J, Wang W, Liu Y, Du H, Ning W, Zheng G, Jin C, Han Y, Wang N, Yang Z, Tian M and Zhang Y 2014 Appl. Phys. Lett. 105 063109
[3] Ma H, Xing Y, Cui B, Han J, Wang B and Zeng Z 2022 Chin. Phys. B 31 108502
[4] Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X and Zhang H 2012 ACS Nano 6 74
[5] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechol. 6 147
[6] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K 2008 Natl. Acad. Sci. 105 14262
[7] Wei D, Li Y, Feng Z, Guo G, Ma Y, Yu H, Luo Q, Tang Y and Dai X 2021 Chin. Phys. B 30 117103
[8] Arrechea S, Aljarilla A, De La Cruz P, Singh M K, Sharma G D and Langa F 2017 J. Mater. Chem. C 5 4742
[9] Kucek V, Drasar C, Navratil J, Benes L and Lostak P 2013 J. Cryst. Growth. 380 72
[10] Wang W, Li L, Zhang Z, Yang J, Tang D and Zhai T 2017 Appl. Phys. Lett. 111 203504
[11] Zhang J, Li S S, Ji W X, Zhang C W, Li P, Zhang S F, Wang P J and Yan S S 2017 J. Mater, Chem. C 5 8847
[12] Roychowdhury A, Dalui T K, Ghose P K, Mahatha S K,Wind N, Rossnagel K, Majumdar S and Giri S 2022 J. Solid. State. Chem. 312 123106
[13] Hirschberger M, Kushwaha S, Wang Z, Gibson Q, Liang S, Belvin C A, Bernevig B A, Cava R J and Ong N P 2016 Nat. Mater 15 1161
[14] Wu M, Zheng G, Chu W, Liu Y, Gao W, Zhang, H Lu J, Han Y and Zhou J 2018 Phys. Rev. B 98 161110
[15] Arnold F, Shekhar C, Wu S C, Sun Y, Dos R D, Kumar N, Naumann M, Ajeesh M O, Schmidt M, Grushin A G, Bardarson J H, Baenitz M, Sokolov D, Borrmann H, Nicklas M, Felser C, Hassinger E and Yan B 2016 Nat. Commun. 7 11615
[16] Cui H N, Zhu G Y, Wang J K, Yang J J, Zheng W Z, Lin B C, Liao Z M, Wang S and Yu D P 2023 Chin. Phys. B 32 077305
[17] Hu J, Rosenbaum T F and Betts J B 2005 Phys. Rev. Lett. 95 186603
[18] Wang J, Chen C L, Yang S H, Luo B C, Duan M M and Jin K X 2013 Chin. Phys. B 22 127302
[19] Nandy S, Sharma G, Taraphder A and Tewari S 2017 Phys. Rev. Lett. 119 176804
[20] Ma D, Jiang H, Liu H and Xie X C 2019 Phys. Rev. B 99 115121
[21] Burkov A A 2017 Phys. Rev. B 96 041110
[22] Ghosh S, Sinha D, Nandy S and Taraphder A 2020 Phys. Rev. B 102 121105
[23] Zhong J Y, Zhuang J C and Du Y 2023 Chin. Phys. B 32 047203
[24] Li H, Wang H W, He H, Wang J and Shen S Q 2018 Phys. Rev. B 97 201110
[25] Singha R, Roy S, Pariari A, Satpati B and Mandal P 2018 Phys. Rev. B 98 081103
[26] Li P, Zhang C H, Zhang J W, Wen Y and Zhang X X 2018 Phys. Rev. B 98 121108
[27] Meng J, Xue H, Liu M, Jiang W, Zhang Z, Ling J, He L, Dou R, Xiong C and Nie J 2020 J. Phys.: Condens. Matter 32 015702
[28] You Y, Gong Y, Li H, Li Z, Zhu M, Tang J, Liu E, Yao Y, Xu G, Xu F and Wang W 2019 Phys. Rev. B 100 134441
[29] Liu Y, Yang J, Wang W, Du H, Ning W, Ling L, Tong W, Qu Z, Cao G and Tian M 2017 Phys. Rev. B 95 161103
[30] Tang H X, Kawakami R K, Awschalom D D and Roukes M L 2003 Phys. Rev. Lett. 90 107201
[31] Cai M, Chen Z, Yang Y, Zhu X, Sun H, Zhu A, Liu X, Han Y, Gao W and Tian M 2024 Chin. Phys. Lett. 41 077303
[32] Liu Q, Fei F, Chen B, Bo X, Wei B, Zhang S, Zhang M, Xie F, Naveed M, Wan X, Song F and Wang B 2019 Phys. Rev. B 99 155119
[33] Liang D D, Wang Y J, Zhen W L, Yang J, Weng S R, Yan X, Han Y Y, Tong W, Zhu W K, Pi L and Zhang C J 2019 AIP. Adv. 9 055015
[34] Gao W, Han M, Chen Z, Zhu A, Han Y, Zhu M, Zhu X and Tian M 2023 Appl. Phys. Lett. 122 173102
[35] Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287
[36] Cao Q, Yun F F, Sang L, Xiang F, Liu G and Wang X 2017 Nanotechnology 28 475703
[37] Kouwenhoven L and Glazman L 2001 Phys. World 14 33
[38] Wang J, DaSilva A M, Chang C Z, He K, Jain J K, Samarth N, Ma X C, Xue Q K and Chan M H W 2011 Phys. Rev. B 83 245438
[39] Zhao B, Yan X and Pakhomov A B 1997 J. Appl. Phys. 81 5527
[40] McGuire T and Potter R 1975 IEEE Trans. Magn. 11 1018
[41] Zhang Y J, Wang Y X, Meng X D, Liu Y, Ding X and Yang J H 2009 J. Appl. Phys. 105 083910
[42] Fernández-Pacheco A, De Teresa J M, Orna J, Morellon L, Algarabel P A, Pardo J A, Ibarra M R, Magen C and Snoeck E 2008 Phys. Rev. B 78 212402
[43] Bowen M, Friedland K J, Herfort J, Schönherr H P and Ploog K H 2005 Phys. Rev. B 71 172401
[44] Zheng X, Dong X, Zhang S and Yang J 2020 J. Alloys Compd. 818 152894
[45] Ding X, Liu T, Ahmed S, Bao N, Ding J and Yi J 2019 J. Alloys Compd. 772 740
[46] Drašar Č, Kucek V, BenešL and Lošták P 2012 J. Solid. State. Chem. 193 42
[1] Symmetry transformation of nonlinear optical current of tilted Weyl nodes and application to ferromagnetic MnBi2Te4
Zhuo-Cheng Lu(卢倬成) and Ji Feng(冯济). Chin. Phys. B, 2024, 33(4): 047303.
[2] Angular and planar transport properties of antiferromagnetic V5S8
Xiao-Kai Wu(吴晓凯), Bin Wang(王彬), De-Tong Wu(吴德桐), Bo-Wen Chen(陈博文), Meng-Juan Mi(弭孟娟), Yi-Lin Wang(王以林), and Bing Shen(沈冰). Chin. Phys. B, 2024, 33(2): 027503.
[3] Nonlinear current response and electric quantum oscillations in the Dirac semimetal Cd3As2
Hao-Nan Cui(崔浩楠), Ze-Nan Wu(吴泽南), Jian-Kun Wang(王建坤), Guang-Yu Zhu(祝光宇), Jia-Jie Yang(杨佳洁), Wen-Zhuang Zheng(郑文壮), Zhi-Min Liao(廖志敏), Shuo Wang(王硕), Ben-Chuan Lin(林本川), and Dapeng Yu(俞大鹏). Chin. Phys. B, 2023, 32(8): 087306.
[4] Negative magnetoresistance in Dirac semimetal Cd3As2 with in-plane magnetic field perpendicular to current
Hao-Nan Cui(崔浩楠), Guang-Yu Zhu(祝光宇), Jian-Kun Wang(王建坤), Jia-Jie Yang(杨佳洁), Wen-Zhuang Zheng(郑文壮), Ben-Chuan Lin(林本川), Zhi-Min Liao(廖志敏), Shuo Wang(王硕), and Da-Peng Yu(俞大鹏). Chin. Phys. B, 2023, 32(7): 077305.
[5] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[6] Doping-enhanced robustness of anomaly-related magnetoresistance in WTe2±α flakes
Jianchao Meng(孟建超), Xinxiang Chen(陈鑫祥), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Weimin Jiang(姜伟民), Zitao Zhang(张子涛), Changmin Xiong(熊昌民), Ruifen Dou(窦瑞芬), and Jiacai Nie(聂家财). Chin. Phys. B, 2023, 32(4): 047502.
[7] Giant interface spin-orbit torque in NiFe/Pt bilayers
Shu-Fa Li(李树发), Tao Zhu(朱涛). Chin. Phys. B, 2020, 29(8): 087102.
[8] Ionic liquid gating control of planar Hall effect in Ni80Fe20/HfO2 heterostructures
Yang-Ping Wang(汪样平), Fu-Fu Liu(刘福福), Cai Zhou(周偲), Chang-Jun Jiang(蒋长军). Chin. Phys. B, 2020, 29(7): 077507.
[9] Recent observations of negative longitudinal magnetoresistance in semimetal
Xi-Tong Xu(许锡童), Shuang Jia(贾爽). Chin. Phys. B, 2016, 25(11): 117204.
[10] Magnetization reversal process in Fe/Si (001) single-crystalline film investigated by planar Hall effect
Ye Jun (叶军), He Wei (何为), Hu Bo (胡泊), Tang Jin (汤进), Zhang Yong-Sheng (张永圣), Zhang Xiang-Qun (张向群), Chen Zi-Yu (陈子瑜), Cheng Zhao-Hua (成昭华). Chin. Phys. B, 2015, 24(2): 027505.
No Suggested Reading articles found!