1 Information Materials and Intelligent Sensing Laboratory of Anhui Province, Center of Free Electron Laser & High Magnetic Field, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; 2 Anhui Key Laboratory of Low-energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; 3 School of Physics and Optoelectronics Engineering, Anhui University, Hefei 230601, China
Abstract We systematically investigate the planar transport properties of the two-dimensional layered compound GaGeTe. The results reveal distinct anisotropies in both the longitudinal and planar Hall resistances as the magnetic field is rotated within the plane, which are well-captured by the planar Hall effect (PHE) model. Further analysis indicates that the primary contribution to the PHE in GaGeTe arises from its ferromagnetic component and anisotropic orbital resistance, rather than topologically nontrivial chiral anomaly. This work deepens our understanding of the PHE mechanism and offers valuable insights for the development of planar Hall sensors based on two-dimensional materials.
(Bulk semiconductor and conductivity oscillation devices (including Hall effect devices, space-charge-limited devices, and Gunn effect devices))
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2023YFA1406500), the National Natural Science Foundation of China (Grant Nos. U19A2093 and 11904002), the Excellent Youth Project of the Natural Science Foundation of Anhui Province, China (Grant No. 2308085Y07), and the Anhui Provincial Major Science and Technology Project (Grant No. s202305a12020005).
Cheng Wang(王成), Ankang Zhu(朱安康), Ziyi Fan(范子怡), Peng Huang(黄鹏), Xue Liu(刘学), Xuegang Chen(陈学刚), Yuyan Han(韩玉岩), Zheng Chen(陈正), Xiangde Zhu(朱相德), Mingliang Tian(田明亮), and Wenshuai Gao(高文帅) Planar Hall effect without chiral anomaly in layered topological semimetal candidate GaGeTe 2025 Chin. Phys. B 34 067202
[1] Goli P, Khan J, Wickramaratne D, Lake R K and Balandin A A 2012 Nano. Lett. 12 5941 [2] Yang J, Wang W, Liu Y, Du H, Ning W, Zheng G, Jin C, Han Y, Wang N, Yang Z, Tian M and Zhang Y 2014 Appl. Phys. Lett. 105 063109 [3] Ma H, Xing Y, Cui B, Han J, Wang B and Zeng Z 2022 Chin. Phys. B 31 108502 [4] Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X and Zhang H 2012 ACS Nano 6 74 [5] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechol. 6 147 [6] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K 2008 Natl. Acad. Sci. 105 14262 [7] Wei D, Li Y, Feng Z, Guo G, Ma Y, Yu H, Luo Q, Tang Y and Dai X 2021 Chin. Phys. B 30 117103 [8] Arrechea S, Aljarilla A, De La Cruz P, Singh M K, Sharma G D and Langa F 2017 J. Mater. Chem. C 5 4742 [9] Kucek V, Drasar C, Navratil J, Benes L and Lostak P 2013 J. Cryst. Growth. 380 72 [10] Wang W, Li L, Zhang Z, Yang J, Tang D and Zhai T 2017 Appl. Phys. Lett. 111 203504 [11] Zhang J, Li S S, Ji W X, Zhang C W, Li P, Zhang S F, Wang P J and Yan S S 2017 J. Mater, Chem. C 5 8847 [12] Roychowdhury A, Dalui T K, Ghose P K, Mahatha S K,Wind N, Rossnagel K, Majumdar S and Giri S 2022 J. Solid. State. Chem. 312 123106 [13] Hirschberger M, Kushwaha S, Wang Z, Gibson Q, Liang S, Belvin C A, Bernevig B A, Cava R J and Ong N P 2016 Nat. Mater 15 1161 [14] Wu M, Zheng G, Chu W, Liu Y, Gao W, Zhang, H Lu J, Han Y and Zhou J 2018 Phys. Rev. B 98 161110 [15] Arnold F, Shekhar C, Wu S C, Sun Y, Dos R D, Kumar N, Naumann M, Ajeesh M O, Schmidt M, Grushin A G, Bardarson J H, Baenitz M, Sokolov D, Borrmann H, Nicklas M, Felser C, Hassinger E and Yan B 2016 Nat. Commun. 7 11615 [16] Cui H N, Zhu G Y, Wang J K, Yang J J, Zheng W Z, Lin B C, Liao Z M, Wang S and Yu D P 2023 Chin. Phys. B 32 077305 [17] Hu J, Rosenbaum T F and Betts J B 2005 Phys. Rev. Lett. 95 186603 [18] Wang J, Chen C L, Yang S H, Luo B C, Duan M M and Jin K X 2013 Chin. Phys. B 22 127302 [19] Nandy S, Sharma G, Taraphder A and Tewari S 2017 Phys. Rev. Lett. 119 176804 [20] Ma D, Jiang H, Liu H and Xie X C 2019 Phys. Rev. B 99 115121 [21] Burkov A A 2017 Phys. Rev. B 96 041110 [22] Ghosh S, Sinha D, Nandy S and Taraphder A 2020 Phys. Rev. B 102 121105 [23] Zhong J Y, Zhuang J C and Du Y 2023 Chin. Phys. B 32 047203 [24] Li H, Wang H W, He H, Wang J and Shen S Q 2018 Phys. Rev. B 97 201110 [25] Singha R, Roy S, Pariari A, Satpati B and Mandal P 2018 Phys. Rev. B 98 081103 [26] Li P, Zhang C H, Zhang J W, Wen Y and Zhang X X 2018 Phys. Rev. B 98 121108 [27] Meng J, Xue H, Liu M, Jiang W, Zhang Z, Ling J, He L, Dou R, Xiong C and Nie J 2020 J. Phys.: Condens. Matter 32 015702 [28] You Y, Gong Y, Li H, Li Z, Zhu M, Tang J, Liu E, Yao Y, Xu G, Xu F and Wang W 2019 Phys. Rev. B 100 134441 [29] Liu Y, Yang J, Wang W, Du H, Ning W, Ling L, Tong W, Qu Z, Cao G and Tian M 2017 Phys. Rev. B 95 161103 [30] Tang H X, Kawakami R K, Awschalom D D and Roukes M L 2003 Phys. Rev. Lett. 90 107201 [31] Cai M, Chen Z, Yang Y, Zhu X, Sun H, Zhu A, Liu X, Han Y, Gao W and Tian M 2024 Chin. Phys. Lett. 41 077303 [32] Liu Q, Fei F, Chen B, Bo X, Wei B, Zhang S, Zhang M, Xie F, Naveed M, Wan X, Song F and Wang B 2019 Phys. Rev. B 99 155119 [33] Liang D D, Wang Y J, Zhen W L, Yang J, Weng S R, Yan X, Han Y Y, Tong W, Zhu W K, Pi L and Zhang C J 2019 AIP. Adv. 9 055015 [34] Gao W, Han M, Chen Z, Zhu A, Han Y, Zhu M, Zhu X and Tian M 2023 Appl. Phys. Lett. 122 173102 [35] Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287 [36] Cao Q, Yun F F, Sang L, Xiang F, Liu G and Wang X 2017 Nanotechnology 28 475703 [37] Kouwenhoven L and Glazman L 2001 Phys. World 14 33 [38] Wang J, DaSilva A M, Chang C Z, He K, Jain J K, Samarth N, Ma X C, Xue Q K and Chan M H W 2011 Phys. Rev. B 83 245438 [39] Zhao B, Yan X and Pakhomov A B 1997 J. Appl. Phys. 81 5527 [40] McGuire T and Potter R 1975 IEEE Trans. Magn. 11 1018 [41] Zhang Y J, Wang Y X, Meng X D, Liu Y, Ding X and Yang J H 2009 J. Appl. Phys. 105 083910 [42] Fernández-Pacheco A, De Teresa J M, Orna J, Morellon L, Algarabel P A, Pardo J A, Ibarra M R, Magen C and Snoeck E 2008 Phys. Rev. B 78 212402 [43] Bowen M, Friedland K J, Herfort J, Schönherr H P and Ploog K H 2005 Phys. Rev. B 71 172401 [44] Zheng X, Dong X, Zhang S and Yang J 2020 J. Alloys Compd. 818 152894 [45] Ding X, Liu T, Ahmed S, Bao N, Ding J and Yi J 2019 J. Alloys Compd. 772 740 [46] Drašar Č, Kucek V, BenešL and Lošták P 2012 J. Solid. State. Chem. 193 42
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.