Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 127503    DOI: 10.1088/1674-1056/ad7af7
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Valley modulation and topological phase transition in staggered kagome ferromagnets

Yuheng Xing(邢玉恒), Wenjuan Qiu(邱文娟), Xinxing Wu(吴新星)†, and Yue Tan(谭悦)‡
Department of Physics, School of Mathematics and Physics, Yancheng Institute of Technology, Yancheng 224051, China
Abstract  Owing to their charge-free property, magnons are highly promising for achieving dissipationless transport without Joule heating, and are thus potentially applicable to energy-efficient devices. Here, we investigate valley magnons and associated valley modulations in a kagome ferromagnetic lattice with staggered exchange interaction and Dzyaloshinskii-Moriya interaction. The staggered exchange interaction breaks the spatial inversion symmetry, leading to a valley magnon Hall effect. With nonzero Dzyaloshinskii-Moriya interaction in a staggered kagome lattice, the magnon Hall effect can be observed from only one valley. Moreover, reversing the Dzyaloshinskii-Moriya interaction ($D\to -D$) and exchanging $J_{1}$ and $J_{2}$ ($J_{1} \leftrightarrow J_{2}$) can also regulate the position of the unequal valleys. With increasing Dzyaloshinskii-Moriya interaction, a series of topological phase transitions appear when two bands come to touch and split at the valleys. The valley Hall effect and topological phase transitions observed in kagome magnon lattices can be realized in thin films of insulating ferromagnets such as Lu$_{2}$V$_{2}$O$_{7}$, and will extend the basis for magnonics applications in the future.
Keywords:  valley modulation      Dzyaloshinskii-Moriya interaction      staggered kagome ferromagnets      topological phase transitions      magnon Hall effect  
Received:  17 June 2024      Revised:  31 August 2024      Accepted manuscript online:  14 September 2024
PACS:  75.30.Ds (Spin waves)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  75.70.Ak (Magnetic properties of monolayers and thin films)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: We thank Lifa Zhang and Haiyang Zhang for helpful discussions. We acknowledge support from the Funding for School-level Research Projects of Yancheng Institute of Technology (Grant Nos. xjr2020038, xjr2022039, and xjr2022040).
Corresponding Authors:  Xinxing Wu, Yue Tan     E-mail:  wuxinxing@ycit.edu.cn;tanyue@ycit.edu.cn

Cite this article: 

Yuheng Xing(邢玉恒), Wenjuan Qiu(邱文娟), Xinxing Wu(吴新星), and Yue Tan(谭悦) Valley modulation and topological phase transition in staggered kagome ferromagnets 2024 Chin. Phys. B 33 127503

[1] Dzyaloshinskii I 1958 J. Phys. Chem. Solids 4 241
[2] Moriya T 1960 Phys. Rev. 120 91
[3] Katsura H, Nagaosa N and Lee P A 2010 Phys. Rev. Lett. 104 066403
[4] van Hoogdalem K A, Tserkovnyak Y and Loss D 2013 Phys. Rev. B 87 024402
[5] Matsumoto R and Murakami S 2011 Phys. Rev. Lett. 106 197202
[6] Cheng R, Okamoto S and Xiao D 2016 Phys. Rev. Lett. 117 217202
[7] Zyuzin V Z and Kovalev A A 2016 Phys. Rev. Lett. 117 217203
[8] Zhang L, Ren J, Wang J S and Li B W 2013 Phys. Rev. B 87 144101
[9] Hasan M and Kane C 2010 Rev. Mod. Phys. 82 3045
[10] Qi X and Zhang S 2011 Rev. Mod. Phys. 83 1057
[11] Shindou R, Matsumoto R, Murakami S and Ohe J I 2013 Phys. Rev. B 87 174427
[12] Mook A, Henk J and Mertig I 2014 Phys. Rev. B 90 024412
[13] Mook A, Henk J and Mertig I 2016 Spintronics IX. International Society for Optics and Photonics 9931 993134
[14] Mena M, Perry R, Perring T, Guerrero M Le S, Storni M, Adroja D, Ruegg C and McMorrow D 2014 Phys. Rev. Lett. 113 047202
[15] Chisnell R, Helton J S, Freedman D E, Singh D K, BeWley R I, Nocera D G and Lee Y S 2015 Phys. Rev. Lett. 115 147201
[16] Kruglyak V V, Demokritov S O and Grundler D 2010 J. Phys. D 43 264001
[17] Owerre S A 2017 J. Phys. Commun. 1 025007
[18] Li K, Li C, Hu J, Li Y and Fang C 2017 Phys. Rev. Lett. 119 247202
[19] Su Y, Wang X S and Wang X R 2017 Phys. Rev. B 95 224403
[20] Li F, Li Y, Kim Y, Balents L, Yu Y and Chen G 2016 Nat. Comm. 7 12691
[21] Owerre S A 2016 J. Phys.: Condens. Matter 28 386001
[22] Kim S K, Ochoa H, Zarzuela R and Tserkovnyak Y 2016 Phys. Rev. Lett. 117 227201
[23] Katsura H, Nagaosa N and Lee P A 2010 Phys. Rev. Lett. 104 066403
[24] Zeng K Y, Song F Y, et al. 2022 Chin. Phys. Lett. 39 107501
[25] Sebastin A D, Jelena K and Loss D 2019 Phys. Rev. Lett. 122 187203
[26] Kawano M and Hotta C 2019 Phys. Rev. B 99 054422
[27] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
[28] Yao W, Xiao D and Niu Q 2008 Phys. Rev. B 77 235406
[29] Xiao D, et al. 2012 Phys. Rev. Lett. 108 196802
[30] Xing Y H, Xu X F and Zhang L F 2017 Acta Phys. Sin. 66 226601 (in Chinese)
[31] Mak K F, McGill K L, Park J and McEuen P L 2014 Science 344 1489
[32] Lee J, Mak K F and Shan J 2016 Nat. Nanotech. 11 421
[33] Gorbachev R, Song J, Yu G, Kretinin A, Withers F, Cao Y, Mishchenko A, Grigorieva I, Novoselov K, Levitov L S and Geim A 2014 Science 346 448
[34] Owerre S A 2016 J. Phys.: Condens. Matter 28 386001
[35] Kim S K, Ochoa H, Zarzuela R and Tserkovnyak Y 2016 Phys. Rev. Lett. 117 227201
[36] Cao X, Chen K and He D 2015 J. Phys.: Condens. Matter 27 166003
[37] Ideue T, Onose Y, Katsura H, Shiomi Y, Ishiwata S, Nagaosa N and Tokura Y 2012 Phys. Rev. B 85 134411
[38] Onose Y, Ideue T, Katsura H, Shiomi Y, Nagaosa N and Tokura Y 2010 Science 329 297
[39] Zhai X C and Blanter Y M 2020 Phys. Rev. B 102 075407
[40] Hidalgo-Sacoto R, González R I, et al. 2020 Phys. Rev. B 101 205425
[41] Heisenberg W 1928 Z. Phys. 49 619
[42] Bose I and Bhaumik U 1994 J. Phys.: Condens. Matter 6 10617
[43] Chernyshev A L and Maksimov P A 2016 Phys. Rev. Lett. 117 187203
[44] Su Y, Wang X S and Wang X R 2017 Phys. Rev. B 95 224403
[45] Rckriegel A, Brataas A and Duine R A 2018 Phys. Rev. B 97 081106
[46] Xing Y H, Ma F S, Zhang L F and Zhang Z Y 2020 Sci. China-Phys. Mech. Astron. 63 107511
[47] Xing Y H, Chen H, Xu N, Li X and Zhang L F 2022 Phys. Rev. B 105 104409
[48] Li K K 2023 Chin. Phys. Lett. 40 027502
[49] Shores M P, Nytko E A, Bartlett B M and Nocera D G 2005 J. Am. Chem. Soc. 127 13462
[50] Olariu A, Mendels P, Bert F, Duc F, Trombe J C, deVries M A and Harrison A 2008 Phys. Rev. Lett. 100 087202
[51] Colman R H, Ritter C and Wills A S 2008 Chem. Mater. 20 6897
[52] Holstein T and Primakoff H 1940 Phys. Rev. 58 1098
[53] Zhang L F, Wang J S and Li B W 2008 Phys. Rev. B 78 144416
[54] Zhang L F and Niu Q 2015 Phys. Rev. Lett. 115 115502
[1] Dzyaloshinskii-Moriya interaction and field-free sub-10 nm topological magnetism in Fe/bismuth oxychalcogenides heterostructures
Yaoyuan Wang(王垚元), Long You(游龙), Kai Chang(常凯), and Hongxin Yang(杨洪新). Chin. Phys. B, 2024, 33(9): 097508.
[2] Interacting topological magnons in a checkerboard ferromagnet
Heng Zhu(朱恒), Hongchao Shi(施洪潮), Zhengguo Tang(唐政国), and Bing Tang(唐炳). Chin. Phys. B, 2024, 33(3): 037503.
[3] Oscillation of Dzyaloshinskii-Moriya interaction driven by weak electric fields
Runze Chen(陈润泽), Anni Cao(曹安妮), Xinran Wang(王馨苒), Yang Liu(柳洋), Hongxin Yang(杨洪新), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2024, 33(2): 027501.
[4] Low-temperature ferromagnetism in tensile-strained LaCoO2.5 thin film
Yang-Yang Fan(范洋洋), Jing Wang(王晶), Feng-Xia Hu(胡凤霞), Bao-He Li(李宝河), Ai-Cong Geng(耿爱丛), Zhuo Yin(殷卓), Cheng Zhang(张丞), Hou-Bo Zhou(周厚博), Meng-Qin Wang(王梦琴), Zi-Bing Yu(尉紫冰), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2023, 32(8): 087504.
[5] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[6] Exact soliton solutions in anisotropic ferromagnetic wires with Dzyaloshinskii-Moriya interaction
Qiu-Yan Li(李秋艳), Dun-Zhao(赵敦), and Zai-Dong Li(李再东). Chin. Phys. B, 2021, 30(1): 017504.
[7] Quantum steering in Heisenberg models with Dzyaloshinskii-Moriya interactions
Hui-Zhen Li(李慧贞), Rong-Sheng Han(韩榕生), Ye-Qi Zhang(张业奇), Liang Chen(陈亮). Chin. Phys. B, 2018, 27(12): 120304.
[8] Transferring information through a mixed-five-spin chain channel
Hamid Arian Zad, Hossein Movahhedian. Chin. Phys. B, 2016, 25(8): 080307.
[9] Thermal entanglement of the Ising–Heisenberg diamond chain with Dzyaloshinskii–Moriya interaction
Qiao Jie (谯洁), Zhou Bin (周斌). Chin. Phys. B, 2015, 24(11): 110306.
[10] The effects of the Dzyaloshinskii-Moriya interaction on the ground-state properties of the XY chain in a transverse field
Zhong Ming (钟鸣), Xu Hui (徐卉), Liu Xiao-Xian (刘小贤), Tong Pei-Qing (童培庆). Chin. Phys. B, 2013, 22(9): 090313.
[11] Magnetization reversal within Dzyaloshinskii–Moriya interaction under on-site Coulomb interaction in BiCrO3
Feng Hong-Jian (冯宏剑 ). Chin. Phys. B, 2012, 21(8): 087103.
No Suggested Reading articles found!