CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Valley modulation and topological phase transition in staggered kagome ferromagnets |
Yuheng Xing(邢玉恒), Wenjuan Qiu(邱文娟), Xinxing Wu(吴新星)†, and Yue Tan(谭悦)‡ |
Department of Physics, School of Mathematics and Physics, Yancheng Institute of Technology, Yancheng 224051, China |
|
|
Abstract Owing to their charge-free property, magnons are highly promising for achieving dissipationless transport without Joule heating, and are thus potentially applicable to energy-efficient devices. Here, we investigate valley magnons and associated valley modulations in a kagome ferromagnetic lattice with staggered exchange interaction and Dzyaloshinskii-Moriya interaction. The staggered exchange interaction breaks the spatial inversion symmetry, leading to a valley magnon Hall effect. With nonzero Dzyaloshinskii-Moriya interaction in a staggered kagome lattice, the magnon Hall effect can be observed from only one valley. Moreover, reversing the Dzyaloshinskii-Moriya interaction ($D\to -D$) and exchanging $J_{1}$ and $J_{2}$ ($J_{1} \leftrightarrow J_{2}$) can also regulate the position of the unequal valleys. With increasing Dzyaloshinskii-Moriya interaction, a series of topological phase transitions appear when two bands come to touch and split at the valleys. The valley Hall effect and topological phase transitions observed in kagome magnon lattices can be realized in thin films of insulating ferromagnets such as Lu$_{2}$V$_{2}$O$_{7}$, and will extend the basis for magnonics applications in the future.
|
Received: 17 June 2024
Revised: 31 August 2024
Accepted manuscript online: 14 September 2024
|
PACS:
|
75.30.Ds
|
(Spin waves)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
75.70.Ak
|
(Magnetic properties of monolayers and thin films)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
Fund: We thank Lifa Zhang and Haiyang Zhang for helpful discussions. We acknowledge support from the Funding for School-level Research Projects of Yancheng Institute of Technology (Grant Nos. xjr2020038, xjr2022039, and xjr2022040). |
Corresponding Authors:
Xinxing Wu, Yue Tan
E-mail: wuxinxing@ycit.edu.cn;tanyue@ycit.edu.cn
|
Cite this article:
Yuheng Xing(邢玉恒), Wenjuan Qiu(邱文娟), Xinxing Wu(吴新星), and Yue Tan(谭悦) Valley modulation and topological phase transition in staggered kagome ferromagnets 2024 Chin. Phys. B 33 127503
|
[1] Dzyaloshinskii I 1958 J. Phys. Chem. Solids 4 241 [2] Moriya T 1960 Phys. Rev. 120 91 [3] Katsura H, Nagaosa N and Lee P A 2010 Phys. Rev. Lett. 104 066403 [4] van Hoogdalem K A, Tserkovnyak Y and Loss D 2013 Phys. Rev. B 87 024402 [5] Matsumoto R and Murakami S 2011 Phys. Rev. Lett. 106 197202 [6] Cheng R, Okamoto S and Xiao D 2016 Phys. Rev. Lett. 117 217202 [7] Zyuzin V Z and Kovalev A A 2016 Phys. Rev. Lett. 117 217203 [8] Zhang L, Ren J, Wang J S and Li B W 2013 Phys. Rev. B 87 144101 [9] Hasan M and Kane C 2010 Rev. Mod. Phys. 82 3045 [10] Qi X and Zhang S 2011 Rev. Mod. Phys. 83 1057 [11] Shindou R, Matsumoto R, Murakami S and Ohe J I 2013 Phys. Rev. B 87 174427 [12] Mook A, Henk J and Mertig I 2014 Phys. Rev. B 90 024412 [13] Mook A, Henk J and Mertig I 2016 Spintronics IX. International Society for Optics and Photonics 9931 993134 [14] Mena M, Perry R, Perring T, Guerrero M Le S, Storni M, Adroja D, Ruegg C and McMorrow D 2014 Phys. Rev. Lett. 113 047202 [15] Chisnell R, Helton J S, Freedman D E, Singh D K, BeWley R I, Nocera D G and Lee Y S 2015 Phys. Rev. Lett. 115 147201 [16] Kruglyak V V, Demokritov S O and Grundler D 2010 J. Phys. D 43 264001 [17] Owerre S A 2017 J. Phys. Commun. 1 025007 [18] Li K, Li C, Hu J, Li Y and Fang C 2017 Phys. Rev. Lett. 119 247202 [19] Su Y, Wang X S and Wang X R 2017 Phys. Rev. B 95 224403 [20] Li F, Li Y, Kim Y, Balents L, Yu Y and Chen G 2016 Nat. Comm. 7 12691 [21] Owerre S A 2016 J. Phys.: Condens. Matter 28 386001 [22] Kim S K, Ochoa H, Zarzuela R and Tserkovnyak Y 2016 Phys. Rev. Lett. 117 227201 [23] Katsura H, Nagaosa N and Lee P A 2010 Phys. Rev. Lett. 104 066403 [24] Zeng K Y, Song F Y, et al. 2022 Chin. Phys. Lett. 39 107501 [25] Sebastin A D, Jelena K and Loss D 2019 Phys. Rev. Lett. 122 187203 [26] Kawano M and Hotta C 2019 Phys. Rev. B 99 054422 [27] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809 [28] Yao W, Xiao D and Niu Q 2008 Phys. Rev. B 77 235406 [29] Xiao D, et al. 2012 Phys. Rev. Lett. 108 196802 [30] Xing Y H, Xu X F and Zhang L F 2017 Acta Phys. Sin. 66 226601 (in Chinese) [31] Mak K F, McGill K L, Park J and McEuen P L 2014 Science 344 1489 [32] Lee J, Mak K F and Shan J 2016 Nat. Nanotech. 11 421 [33] Gorbachev R, Song J, Yu G, Kretinin A, Withers F, Cao Y, Mishchenko A, Grigorieva I, Novoselov K, Levitov L S and Geim A 2014 Science 346 448 [34] Owerre S A 2016 J. Phys.: Condens. Matter 28 386001 [35] Kim S K, Ochoa H, Zarzuela R and Tserkovnyak Y 2016 Phys. Rev. Lett. 117 227201 [36] Cao X, Chen K and He D 2015 J. Phys.: Condens. Matter 27 166003 [37] Ideue T, Onose Y, Katsura H, Shiomi Y, Ishiwata S, Nagaosa N and Tokura Y 2012 Phys. Rev. B 85 134411 [38] Onose Y, Ideue T, Katsura H, Shiomi Y, Nagaosa N and Tokura Y 2010 Science 329 297 [39] Zhai X C and Blanter Y M 2020 Phys. Rev. B 102 075407 [40] Hidalgo-Sacoto R, González R I, et al. 2020 Phys. Rev. B 101 205425 [41] Heisenberg W 1928 Z. Phys. 49 619 [42] Bose I and Bhaumik U 1994 J. Phys.: Condens. Matter 6 10617 [43] Chernyshev A L and Maksimov P A 2016 Phys. Rev. Lett. 117 187203 [44] Su Y, Wang X S and Wang X R 2017 Phys. Rev. B 95 224403 [45] Rckriegel A, Brataas A and Duine R A 2018 Phys. Rev. B 97 081106 [46] Xing Y H, Ma F S, Zhang L F and Zhang Z Y 2020 Sci. China-Phys. Mech. Astron. 63 107511 [47] Xing Y H, Chen H, Xu N, Li X and Zhang L F 2022 Phys. Rev. B 105 104409 [48] Li K K 2023 Chin. Phys. Lett. 40 027502 [49] Shores M P, Nytko E A, Bartlett B M and Nocera D G 2005 J. Am. Chem. Soc. 127 13462 [50] Olariu A, Mendels P, Bert F, Duc F, Trombe J C, deVries M A and Harrison A 2008 Phys. Rev. Lett. 100 087202 [51] Colman R H, Ritter C and Wills A S 2008 Chem. Mater. 20 6897 [52] Holstein T and Primakoff H 1940 Phys. Rev. 58 1098 [53] Zhang L F, Wang J S and Li B W 2008 Phys. Rev. B 78 144416 [54] Zhang L F and Niu Q 2015 Phys. Rev. Lett. 115 115502 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|