Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 057801    DOI: 10.1088/1674-1056/adbee7
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of helium ion irradiation and thermal annealing on the optical and structural properties of hexagonal boron nitride

Guan-Lin Liu(刘冠麟)1,2, Ji-Lian Xu(徐辑廉)1, Peng-Tao Jing(景鹏涛)1,†, Jing-Jing Shao(邵京京)1,2, Xu Guo(郭旭)1,2, Yun-Tao Wu(吴韵涛)1,2, Feng Qin(覃凤)1,2, Zhen Cheng(程祯)1, Deming Liu(刘德明)1, Yang Bao(鲍洋)1, Hai Xu(徐海)1, Li-Gong Zhang(张立功)1, Da Zhan(詹达)1, Jia-Xu Yan(闫家旭)1, Lei Liu(刘雷)1, and De-Zhen Shen(申德振)1
1 State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
2 University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
Abstract  Hexagonal boron nitride (h-BN) has emerged as a promising two-dimensional material for quantum and optoelectronic applications, with its unique ability to host engineered defects enabling single-photon emission and spin manipulation. This study investigates defect formation in h-BN using focused helium ion beam (He+ FIB) irradiation and post-annealing treatments. We demonstrate that helium ion irradiation at doses up to 2×109 ions/μm2 does not induce phase transitions or amorphization. Spectroscopic analyses, including differential reflectance spectroscopy (DRS), photoluminescence (PL), and Raman spectroscopy, reveal substantial defect formation and structural modifications. Notably, the irradiation induces a softening of in-plane and interlayer phonon modes, characterized by frequency redshifts of 10.5 cm1 and 3.2 cm1, respectively. While high-temperature thermal annealing mitigates lattice defects and facilitates single-photon emission, the E2g peak width remains 38% broader and the shear mode peak width is 60% broader compared to pre-annealing conditions in the Raman spectra, indicating residual structural degradation. These findings provide insights into defect engineering mechanisms in h-BN, offering guidance for optimizing processing conditions and advancing quantum and optoelectronic device technologies.
Keywords:  hexagonal boron nitride      focused ion beam      defect engineering      quantum materials      spectroscopy  
Received:  22 January 2025      Revised:  25 February 2025      Accepted manuscript online:  11 March 2025
PACS:  78.30.-j (Infrared and Raman spectra)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  61.72.J- (Point defects and defect clusters)  
  81.05.-t (Specific materials: fabrication, treatment, testing, and analysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11727902, 12074372, 12174385, 12334014, and 12304112).
Corresponding Authors:  Peng-Tao Jing     E-mail:  jingpt@ciomp.ac.cn

Cite this article: 

Guan-Lin Liu(刘冠麟), Ji-Lian Xu(徐辑廉), Peng-Tao Jing(景鹏涛), Jing-Jing Shao(邵京京), Xu Guo(郭旭), Yun-Tao Wu(吴韵涛), Feng Qin(覃凤), Zhen Cheng(程祯), Deming Liu(刘德明), Yang Bao(鲍洋), Hai Xu(徐海), Li-Gong Zhang(张立功), Da Zhan(詹达), Jia-Xu Yan(闫家旭), Lei Liu(刘雷), and De-Zhen Shen(申德振) Effects of helium ion irradiation and thermal annealing on the optical and structural properties of hexagonal boron nitride 2025 Chin. Phys. B 34 057801

[1] Aharonovich I, Englund D and Toth M 2016 Nat. Photonics 10 631
[2] Caldwell J D, Aharonovich I, Cassabois G, Edgar J H, Gil B and Basov D N 2019 Nature Reviews Materials 4 552
[3] Liu X and Hersam M C 2019 Nature Reviews Materials 4 669
[4] Turunen M, Brotons-Gisbert M, Dai Y, Wang Y, Scerri E, Bonato C, Jöns K D, Sun Z and Gerardot B D 2022 Nature Reviews Physics 4 219
[5] Aharonovich I, Tetienne J P and Toth M 2022 Nano Lett. 22 9227
[6] Zhao X Y, Huang J H, Zhuo Z Y, Xue Y Z, Ding K, Dou X M, Liu J and Sun B Q 2020 Chin. Phys. Lett. 37 044204
[7] Toth M and Aharonovich I 2019 Annu. Rev. Phys. Chem. 70 123
[8] Wan N H, Lu T J, Chen K C, Walsh M P, Trusheim M E, De Santis L, Bersin E A, Harris I B, Mouradian S L, Christen I R, Bielejec E S and Englund D 2020 Nature 583 226
[9] Kianinia M, Xu Z Q, Toth M and Aharonovich I 2022 Appl. Phys. Rev. 9 011306
[10] Li C, Fröch J E, Nonahal M, Tran T N, Toth M, Kim S and Aharonovich I 2021 ACS Photonics 8 2966
[11] Li C, Mendelson N, Ritika R, Chen Y, Xu Z Q, Toth M and Aharonovich I 2021 Nano Lett. 21 3626
[12] Xu X, Martin Z O, Sychev D, Lagutchev A S, Chen Y P, Taniguchi T, Watanabe K, Shalaev V M and Boltasseva A 2021 Nano Lett. 21 8182
[13] Wang X J, Fang H H, Li Z Z,Wang D and Sun H B 2024 Light: Science & Applications 13 6
[14] Gan L, Zhang D, Zhang R, Zhang Q, Sun H, Li Y and Ning C Z 2022 ACS Nano 16 14254
[15] Fournier C, Plaud A, Roux S, Pierret A, Rosticher M, Watanabe K, Taniguchi T, Buil S, Quélin X, Barjon J, Hermier J P and Delteil A 2021 Nat. Commun. 12 3779
[16] Ziegler J, Klaiss R, Blaikie A, Miller D, Horowitz V R and Aleman B J 2019 Nano Lett. 19 2121
[17] Glushkov E, Macha M, Räth E, Navikas V, Ronceray N, Cheon C Y, Ahmed A, Avsar A, Watanabe K, Taniguchi T, Shorubalko I, Kis A, Fantner G and Radenovic A 2022 ACS Nano 16 3695
[18] Liang H, Chen Y, Yang C,Watanabe K, Taniguchi T, Eda G and Bettiol A A 2022 Advanced Optical Materials 11 2201941
[19] Liu G L, Wu X Y, Jing P T, Cheng Z, Zhan D, Bao Y, Yan J X, Xu H, Zhang L G, Li B H, Liu K W, Liu L and Shen D Z 2023 Advanced Optical Materials 12 2302083
[20] Sarkar S, Xu Y, Mathew S, Lal M, Chung J Y, Lee H Y, Watanabe K, Taniguchi T, Venkatesan T and Gradečak S 2023 Nano Lett. 24 43
[21] Das S, Melendez A L, Kao I H, García-Monge J A, Russell D, Li J, Watanabe K, Taniguchi T, Edgar J H, Katoch J, Yang F, Hammel P C and Singh S 2024 Phys. Rev. Lett. 133 166704
[22] Venturi G, Chiodini S, Melchioni N, Janzen E, Edgar J H, Ronning C and Ambrosio A 2024 Laser & Photonics Reviews 18 2300973
[23] Hlawacek G and Gölzhäuser A 2016 Helium Ion Microscopy Springer International Publishing)
[24] Li X L, Han W P, Wu J B, Qiao X F, Zhang J and Tan P H 2017 Advanced Functional Materials 27 1604468
[25] Krečmarová M, Andres-Penares D, Fekete L, Ashcheulov P, Molina- Sánchez A, Canet-Albiach R, Gregora I, Mortet V, Martínez-Pastor J P and Sánchez-Royo J F 2019 Nanomaterials 9 1047
[26] Niu Y, Gonzalez-Abad S, Frisenda R, Marauhn P, Drüppel M, Gant P, Schmidt R, Taghavi N S, Barcons D, Molina-Mendoza A J, De Vasconcellos S M, Bratschitsch R, Perez De Lara D, Rohlfing M and Castellanos-Gomez A 2018 Nanomaterials 8 725
[27] Nguyen M H, Lim S Y, Taniguchi T,Wantanabe K and Cheong H 2021 2D Mater. 8 045004
[28] Schué L, Stenger I, Fossard F, Loiseau A and Barjon J 2016 2D Mater. 4 015028
[29] Stenger I, Schué L, Boukhicha M, Berini B, Plaçais B, Loiseau A and Barjon J 2017 2D Mater. 4 031003
[30] Wang W, Li Z, Marsden A J, Bissett M A and Young R J 2021 2D Mater. 8 035058
[31] Zhang H, Horvat J and Lewis R A 2020 2020 45th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) Buffalo, NY, USA 1
[32] Liang L, Zhang J, Sumpter B G, Tan Q H, Tan P H and Meunier V 2017 ACS Nano 11 11777
[33] Pizzi G, Milana S, Ferrari A C, Marzari N and Gibertini M 2021 ACS Nano 15 12509
[34] Lin K Q, Holler J, Bauer J M, Parzefall P, Scheuck M, Peng B, Korn T, Bange S, Lupton J M and Schüller C 2021 Advanced Materials 33 2008333
[35] Maguire P, Downing C, Jadwiszczak J, O’Brien M, Keane D, McManus J B, Duesberg G S, McEvoy V N N and Zhang H 2019 J. Appl. Phys. 125 064305
[36] Lui C H, Ye Z, Keiser C, Xiao X and He R 2014 Nano Lett. 14 4615
[37] Lui C H and Heinz T F 2013 Phys. Rev. B 87 121404
[38] Hu X, Qiu C,Wang J and Liu D 2021 Advanced Materials Interfaces 9 2101612
[39] Hlawacek G, Veligura V, van Gastel R and Poelsema B 2014 J. Vacuum Sci. Technol. B 32 020801
[40] Lehtinen O, Dumur E, Kotakoski J, Krasheninnikov A, Nordlund K and Keinonen J 2011 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 269 1327
[41] Kotakoski J, Jin C H, Lehtinen O, Suenaga K and Krasheninnikov A V 2010 Phys. Rev. B 82 113404
[42] Zhou H, Zhu J, Liu Z, Yan Z, Fan X, Lin J, Wang G, Yan Q, Yu T, Ajayan P M and Tour J M 2014 Nano Research 7 1232
[43] Cai Q, Scullion D, Falin A, Watanabe K, Taniguchi T, Chen Y, Santos E J G and Li L H 2017 Nanoscale 9 3059
[44] Vuong T Q P, Liu S, Van der Lee A, Cuscó R, Artús L, Michel T, Valvin P, Edgar J H, Cassabois G and Gil B 2017 Nat. Mater. 17 152
[45] Reich S, Ferrari A C, Arenal R, Loiseau A, Bello I and Robertson J 2005 Phys. Rev. B 71 205201
[46] Tran T T, Bray K, Ford M J, Toth M and Aharonovich I 2016 Nat. Nanotechnol. 11 37
[47] Orofeo C M, Suzuki S, Kageshima H and Hibino H 2013 Nano Research 6 335
[48] Sarkar S, Xu Y, Mathew S, Lal M, Chung J Y, Lee H Y, Watanabe K, Taniguchi T, Venkatesan T and Gradečak S 2023 Nano Lett. 24 43
[49] Long D A 1977 Raman spectroscopy (New York. McGraw-Hill)
[50] Bae S, Sugiyama N, Matsuo T, Raebiger H, Shudo K I and Ohno K 2017 Phys. Rev. Appl. 7 024001
[51] Maguire P, Downing C, Jadwiszczak J, O’Brien M, Keane D, McManus J B, Duesberg G S, Nicolosi V, McEvoy N and Zhang H 2019 J. Appl. Phys. 125 064305
[52] Wu H, Lin M L, Zhou Y, Zhang X and Tan P H 2023 Anal. Chem. 95 10821
[53] Tan P, Han W, Zhao W, Wu Z, Chang K, Wang H, Wang Y, Bonini N, Marzari N and Pugno N 2012 Nat. Mater. 11 294
[54] Zhang X, Han W, Wu J, Milana S, Lu Y, Li Q, Ferrari A and Tan P 2013 Phys. Rev. B 87 115413
[55] Su X, Gao N, Chen M, Xu H T, Wei X and Di Z F 2019 Chin. Phys. Lett. 36 068501
[1] Band gap engineering and vibrational properties of van der Waals semiconductor ZnPSe3 under compression
Rouqiong Su(苏柔琼), Yuying Li(李玉莹), Chunhua Chen(陈春华), Yifang Yuan(袁亦方), and Haizhong Guo(郭海中). Chin. Phys. B, 2025, 34(6): 066205.
[2] Layer-dependent structural stability and electronic properties of CrPS4 under high pressure
Jian Zhu(朱健), Dengman Feng(冯登满), Liangyu Wang(王亮予), Liang Li(李亮), Fangfei Li(李芳菲), Qiang Zhou(周强), and Yalan Yan(闫雅兰). Chin. Phys. B, 2025, 34(6): 066102.
[3] Laser power-induced Fermi-level shift in graphene/Al2O3 under ambient atmosphere: Toward neutralizing unintentional graphene doping
Jamal Q. M. Almarashi, Mohamed K. Zayed, Hesham Fares, Heba Sukar, Takao Ono, Yasushi Kanai, and Mohamed Almokhtar. Chin. Phys. B, 2025, 34(6): 066302.
[4] Fragmentation dynamics of nitric oxide induced by low-energy heavy ions
Zhixin Li(李志欣), Kaizhao Lin(林楷钊), Xiaolong Zhu(朱小龙), Zhiliang Li(李志亮), Hang Yuan(苑航), Yong Gao(高永), Dalong Guo(郭大龙), Dongmei Zhao(赵冬梅), Shaofeng Zhang(张少锋), and Xinwen Ma(马新文). Chin. Phys. B, 2025, 34(5): 053401.
[5] Stokes/anti-Stokes Raman spectroscopy of Al0.86Ga0.14N semiconductor alloy
Yuru Lin(林玉茹), Yu Li(李宇), Binbin Wu(吴彬彬), Jingyi Liu(刘静仪), Ruiang Guo(郭睿昂), Yangbin Wang(王扬斌), Qiwei Hu(胡启威), and Li Lei(雷力). Chin. Phys. B, 2025, 34(5): 057802.
[6] Electron momentum spectroscopy study on trifluorobromomethane: Electronic structure and electron correlation
Guangqing Chen(陈广庆), Shanshan Niu(牛珊珊), Yaguo Tang(唐亚国), Yuting Zhang(张雨亭), Zhaohui Liu(刘朝辉), Chunkai Xu(徐春凯), Enliang Wang(王恩亮), Xu Shan(单旭), and Xiangjun Chen(陈向军). Chin. Phys. B, 2025, 34(4): 043401.
[7] Band alignment of heterojunctions formed by PtSe2 with doped GaN
Zhuoyang Lv(吕卓阳), Guijuan Zhao(赵桂娟), Wanting Wei(魏婉婷), Xiurui Lv(吕秀睿), and Guipeng Liu(刘贵鹏). Chin. Phys. B, 2025, 34(4): 047304.
[8] Electronic structure of a narrow-gap semiconductor KAg3Te2
Rong Feng(冯荣), Haotian Zheng(郑昊天), Haoran Liu(刘浩然), Binru Zhao(赵彬茹), Xunqing Yin(尹训庆), Zhihua Liu(刘智华), Feng Liu(刘峰), Guohua Wang(王国华), Xiaofeng Xu(许晓峰), Wentao Zhang(张文涛), Weidong Luo(罗卫东), Wei Zhou(周苇), and Dong Qian(钱冬). Chin. Phys. B, 2025, 34(4): 047102.
[9] Angle-resolved photoemission spectroscopy study on transition-metal kagome materials
Jiangang Yang(杨鉴刚), Jianwei Huang(黄建伟), Lin Zhao(赵林), and X. J. Zhou(周兴江). Chin. Phys. B, 2025, 34(4): 047101.
[10] Well defined phase boundaries and superconductivity with high Tc in PbSe single crystal
Jiawei Hu(胡佳玮), Yanghao Meng(孟养浩), He Zhang(张赫), Wei Zhong(钟韦), Hang Zhai(翟航), Xiaohui Yu(于晓辉), Binbin Yue(岳彬彬), and Fang Hong(洪芳). Chin. Phys. B, 2025, 34(4): 046102.
[11] Optical signature of flat bands in topological hourglass semimetal Nb3SiTe6
Shize Cao(曹仕泽), Cuiwei Zhang(张翠伟), Yueshan Xu(徐越山), Jianzhou Zhao(赵建洲), Youguo Shi(石友国), Yun-Ze Long(龙云泽), Jianlin Luo(雒建林), and Zhi-Guo Chen(谌志国). Chin. Phys. B, 2025, 34(2): 027101.
[12] Phase changings in the surface layers of Td-WTe2 driven by alkali-metal deposition
Yu Zhu(朱玉), Zheng-Guo Wang(王政国), Yu-Jing Ren(任宇靖), Peng-Hao Yuan(袁鹏浩), Jing-Zhi Chen(陈景芝), Yi Ou(欧仪), Li-Li Meng(孟丽丽), and Yan Zhang(张焱). Chin. Phys. B, 2025, 34(1): 017302.
[13] Intensity enhancement of Raman active and forbidden modes induced by naturally occurred hot spot at GaAs edge
Tao Liu(刘涛), Miao-Ling Lin(林妙玲), Da Meng(孟达), Xin Cong(从鑫), Qiang Kan(阚强), Jiang-Bin Wu(吴江滨), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2025, 34(1): 017801.
[14] Emergent 3×3 charge order on the Cs reconstruction of kagome superconductor CsV3Sb5
Xianghe Han(韩相和), Zhongyi Cao(曹钟一), Zihao Huang(黄子豪), Zhen Zhao(赵振), Haitao Yang(杨海涛), Hui Chen(陈辉), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(1): 016801.
[15] Valley-selective manipulation of moiré excitons through optical Stark effect
Chenran Xu(徐晨燃), Jichen Zhou(周纪晨), Zhexu Shan(单哲旭), Wenjian Su(苏文健), Kenji Watanabe, Takashi Taniguchi, Dawei Wang(王大伟), and Yanhao Tang(汤衍浩). Chin. Phys. B, 2025, 34(1): 017102.
No Suggested Reading articles found!