Effects of helium ion irradiation and thermal annealing on the optical and structural properties of hexagonal boron nitride
Guan-Lin Liu(刘冠麟)1,2, Ji-Lian Xu(徐辑廉)1, Peng-Tao Jing(景鹏涛)1,†, Jing-Jing Shao(邵京京)1,2, Xu Guo(郭旭)1,2, Yun-Tao Wu(吴韵涛)1,2, Feng Qin(覃凤)1,2, Zhen Cheng(程祯)1, Deming Liu(刘德明)1, Yang Bao(鲍洋)1, Hai Xu(徐海)1, Li-Gong Zhang(张立功)1, Da Zhan(詹达)1, Jia-Xu Yan(闫家旭)1, Lei Liu(刘雷)1, and De-Zhen Shen(申德振)1
1 State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; 2 University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
Abstract Hexagonal boron nitride (h-BN) has emerged as a promising two-dimensional material for quantum and optoelectronic applications, with its unique ability to host engineered defects enabling single-photon emission and spin manipulation. This study investigates defect formation in h-BN using focused helium ion beam (He FIB) irradiation and post-annealing treatments. We demonstrate that helium ion irradiation at doses up to ions/μm does not induce phase transitions or amorphization. Spectroscopic analyses, including differential reflectance spectroscopy (DRS), photoluminescence (PL), and Raman spectroscopy, reveal substantial defect formation and structural modifications. Notably, the irradiation induces a softening of in-plane and interlayer phonon modes, characterized by frequency redshifts of 10.5 cm and 3.2 cm, respectively. While high-temperature thermal annealing mitigates lattice defects and facilitates single-photon emission, the E peak width remains 38% broader and the shear mode peak width is 60% broader compared to pre-annealing conditions in the Raman spectra, indicating residual structural degradation. These findings provide insights into defect engineering mechanisms in h-BN, offering guidance for optimizing processing conditions and advancing quantum and optoelectronic device technologies.
Guan-Lin Liu(刘冠麟), Ji-Lian Xu(徐辑廉), Peng-Tao Jing(景鹏涛), Jing-Jing Shao(邵京京), Xu Guo(郭旭), Yun-Tao Wu(吴韵涛), Feng Qin(覃凤), Zhen Cheng(程祯), Deming Liu(刘德明), Yang Bao(鲍洋), Hai Xu(徐海), Li-Gong Zhang(张立功), Da Zhan(詹达), Jia-Xu Yan(闫家旭), Lei Liu(刘雷), and De-Zhen Shen(申德振) Effects of helium ion irradiation and thermal annealing on the optical and structural properties of hexagonal boron nitride 2025 Chin. Phys. B 34 057801
[1] Aharonovich I, Englund D and Toth M 2016 Nat. Photonics 10 631 [2] Caldwell J D, Aharonovich I, Cassabois G, Edgar J H, Gil B and Basov D N 2019 Nature Reviews Materials 4 552 [3] Liu X and Hersam M C 2019 Nature Reviews Materials 4 669 [4] Turunen M, Brotons-Gisbert M, Dai Y, Wang Y, Scerri E, Bonato C, Jöns K D, Sun Z and Gerardot B D 2022 Nature Reviews Physics 4 219 [5] Aharonovich I, Tetienne J P and Toth M 2022 Nano Lett. 22 9227 [6] Zhao X Y, Huang J H, Zhuo Z Y, Xue Y Z, Ding K, Dou X M, Liu J and Sun B Q 2020 Chin. Phys. Lett. 37 044204 [7] Toth M and Aharonovich I 2019 Annu. Rev. Phys. Chem. 70 123 [8] Wan N H, Lu T J, Chen K C, Walsh M P, Trusheim M E, De Santis L, Bersin E A, Harris I B, Mouradian S L, Christen I R, Bielejec E S and Englund D 2020 Nature 583 226 [9] Kianinia M, Xu Z Q, Toth M and Aharonovich I 2022 Appl. Phys. Rev. 9 011306 [10] Li C, Fröch J E, Nonahal M, Tran T N, Toth M, Kim S and Aharonovich I 2021 ACS Photonics 8 2966 [11] Li C, Mendelson N, Ritika R, Chen Y, Xu Z Q, Toth M and Aharonovich I 2021 Nano Lett. 21 3626 [12] Xu X, Martin Z O, Sychev D, Lagutchev A S, Chen Y P, Taniguchi T, Watanabe K, Shalaev V M and Boltasseva A 2021 Nano Lett. 21 8182 [13] Wang X J, Fang H H, Li Z Z,Wang D and Sun H B 2024 Light: Science & Applications 13 6 [14] Gan L, Zhang D, Zhang R, Zhang Q, Sun H, Li Y and Ning C Z 2022 ACS Nano 16 14254 [15] Fournier C, Plaud A, Roux S, Pierret A, Rosticher M, Watanabe K, Taniguchi T, Buil S, Quélin X, Barjon J, Hermier J P and Delteil A 2021 Nat. Commun. 12 3779 [16] Ziegler J, Klaiss R, Blaikie A, Miller D, Horowitz V R and Aleman B J 2019 Nano Lett. 19 2121 [17] Glushkov E, Macha M, Räth E, Navikas V, Ronceray N, Cheon C Y, Ahmed A, Avsar A, Watanabe K, Taniguchi T, Shorubalko I, Kis A, Fantner G and Radenovic A 2022 ACS Nano 16 3695 [18] Liang H, Chen Y, Yang C,Watanabe K, Taniguchi T, Eda G and Bettiol A A 2022 Advanced Optical Materials 11 2201941 [19] Liu G L, Wu X Y, Jing P T, Cheng Z, Zhan D, Bao Y, Yan J X, Xu H, Zhang L G, Li B H, Liu K W, Liu L and Shen D Z 2023 Advanced Optical Materials 12 2302083 [20] Sarkar S, Xu Y, Mathew S, Lal M, Chung J Y, Lee H Y, Watanabe K, Taniguchi T, Venkatesan T and Gradečak S 2023 Nano Lett. 24 43 [21] Das S, Melendez A L, Kao I H, García-Monge J A, Russell D, Li J, Watanabe K, Taniguchi T, Edgar J H, Katoch J, Yang F, Hammel P C and Singh S 2024 Phys. Rev. Lett. 133 166704 [22] Venturi G, Chiodini S, Melchioni N, Janzen E, Edgar J H, Ronning C and Ambrosio A 2024 Laser & Photonics Reviews 18 2300973 [23] Hlawacek G and Gölzhäuser A 2016 Helium Ion Microscopy Springer International Publishing) [24] Li X L, Han W P, Wu J B, Qiao X F, Zhang J and Tan P H 2017 Advanced Functional Materials 27 1604468 [25] Krečmarová M, Andres-Penares D, Fekete L, Ashcheulov P, Molina- Sánchez A, Canet-Albiach R, Gregora I, Mortet V, Martínez-Pastor J P and Sánchez-Royo J F 2019 Nanomaterials 9 1047 [26] Niu Y, Gonzalez-Abad S, Frisenda R, Marauhn P, Drüppel M, Gant P, Schmidt R, Taghavi N S, Barcons D, Molina-Mendoza A J, De Vasconcellos S M, Bratschitsch R, Perez De Lara D, Rohlfing M and Castellanos-Gomez A 2018 Nanomaterials 8 725 [27] Nguyen M H, Lim S Y, Taniguchi T,Wantanabe K and Cheong H 2021 2D Mater. 8 045004 [28] Schué L, Stenger I, Fossard F, Loiseau A and Barjon J 2016 2D Mater. 4 015028 [29] Stenger I, Schué L, Boukhicha M, Berini B, Plaçais B, Loiseau A and Barjon J 2017 2D Mater. 4 031003 [30] Wang W, Li Z, Marsden A J, Bissett M A and Young R J 2021 2D Mater. 8 035058 [31] Zhang H, Horvat J and Lewis R A 2020 2020 45th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) Buffalo, NY, USA 1 [32] Liang L, Zhang J, Sumpter B G, Tan Q H, Tan P H and Meunier V 2017 ACS Nano 11 11777 [33] Pizzi G, Milana S, Ferrari A C, Marzari N and Gibertini M 2021 ACS Nano 15 12509 [34] Lin K Q, Holler J, Bauer J M, Parzefall P, Scheuck M, Peng B, Korn T, Bange S, Lupton J M and Schüller C 2021 Advanced Materials 33 2008333 [35] Maguire P, Downing C, Jadwiszczak J, O’Brien M, Keane D, McManus J B, Duesberg G S, McEvoy V N N and Zhang H 2019 J. Appl. Phys. 125 064305 [36] Lui C H, Ye Z, Keiser C, Xiao X and He R 2014 Nano Lett. 14 4615 [37] Lui C H and Heinz T F 2013 Phys. Rev. B 87 121404 [38] Hu X, Qiu C,Wang J and Liu D 2021 Advanced Materials Interfaces 9 2101612 [39] Hlawacek G, Veligura V, van Gastel R and Poelsema B 2014 J. Vacuum Sci. Technol. B 32 020801 [40] Lehtinen O, Dumur E, Kotakoski J, Krasheninnikov A, Nordlund K and Keinonen J 2011 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 269 1327 [41] Kotakoski J, Jin C H, Lehtinen O, Suenaga K and Krasheninnikov A V 2010 Phys. Rev. B 82 113404 [42] Zhou H, Zhu J, Liu Z, Yan Z, Fan X, Lin J, Wang G, Yan Q, Yu T, Ajayan P M and Tour J M 2014 Nano Research 7 1232 [43] Cai Q, Scullion D, Falin A, Watanabe K, Taniguchi T, Chen Y, Santos E J G and Li L H 2017 Nanoscale 9 3059 [44] Vuong T Q P, Liu S, Van der Lee A, Cuscó R, Artús L, Michel T, Valvin P, Edgar J H, Cassabois G and Gil B 2017 Nat. Mater. 17 152 [45] Reich S, Ferrari A C, Arenal R, Loiseau A, Bello I and Robertson J 2005 Phys. Rev. B 71 205201 [46] Tran T T, Bray K, Ford M J, Toth M and Aharonovich I 2016 Nat. Nanotechnol. 11 37 [47] Orofeo C M, Suzuki S, Kageshima H and Hibino H 2013 Nano Research 6 335 [48] Sarkar S, Xu Y, Mathew S, Lal M, Chung J Y, Lee H Y, Watanabe K, Taniguchi T, Venkatesan T and Gradečak S 2023 Nano Lett. 24 43 [49] Long D A 1977 Raman spectroscopy (New York. McGraw-Hill) [50] Bae S, Sugiyama N, Matsuo T, Raebiger H, Shudo K I and Ohno K 2017 Phys. Rev. Appl. 7 024001 [51] Maguire P, Downing C, Jadwiszczak J, O’Brien M, Keane D, McManus J B, Duesberg G S, Nicolosi V, McEvoy N and Zhang H 2019 J. Appl. Phys. 125 064305 [52] Wu H, Lin M L, Zhou Y, Zhang X and Tan P H 2023 Anal. Chem. 95 10821 [53] Tan P, Han W, Zhao W, Wu Z, Chang K, Wang H, Wang Y, Bonini N, Marzari N and Pugno N 2012 Nat. Mater. 11 294 [54] Zhang X, Han W, Wu J, Milana S, Lu Y, Li Q, Ferrari A and Tan P 2013 Phys. Rev. B 87 115413 [55] Su X, Gao N, Chen M, Xu H T, Wei X and Di Z F 2019 Chin. Phys. Lett. 36 068501
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.