1 School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China; 2 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract It is challenging to reveal the design strategy for strong piezoelectricity nano-materials used in self-powered and smart nano-devices. Through first-principles calculations, an atom-layer-pair effect is found in MoSiN monolayers with remarkable piezoelectricity. The absolute values of the vertical piezoelectric coefficients have a linear relation with the total electronegativity difference dipole moments. Based on this effect, a promising CrSiNSn monolayer is found with the highest piezoelectricity among the above monolayers. The work expands our understanding of the piezoelectric physical mechanism and provides the design strategy for piezoelectric nano-devices.
(Electronic structure of nanoscale materials and related systems)
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11474123).
Corresponding Authors:
Xiao-Chun Wang
E-mail: wangxiaochun@tsinghua.org.cn
Cite this article:
Qi-Wen He(贺绮雯), Dan-Yang Zhu(朱丹阳), Jun-Hui Wang(王俊辉), He-Na Zhang(张贺娜), Xiao Shang(尚骁), Shou-Xin Cui(崔守鑫), and Xiao-Chun Wang(王晓春) Effective strategy of enhancing piezoelectricity in stable CrSiN4Sn semiconductor monolayers by atom-layer-pair effect 2025 Chin. Phys. B 34 057701
[1] Qiao H, Wang C, Choi W S, Park M H and Kim Y 2021 Mat. Sci. Eng. R 145 100622 [2] Jia H J, Mu H M, Li J P, Zhao Y Z, Wu Y X and Wang X C 2018 Phys. Chem. Chem. Phys. 20 26288 [3] Wu Y, Yang C H, Zhang H N, Zhu L H, Wang X Y, Li Y Q, Zhu S Y and Wang X C 2022 Appl. Surf. Sci. 589 152999 [4] Zhang H N, Wu Y, Yang C, Zhu L H and Wang X C 2021 Phys. Rev. B 104 235437 [5] Zhang H N, Yang C, Li Y Q, Zhu S Y, Wang X Y, He Q W, Tang D S and Wang X C 2022 Appl. Phys. Lett. 121 143504 [6] Li Y Q, Wang X Y, Zhu S Y, Tang D S, He Q W and Wang X C 2022 J. Mater. Chem. C 10 12132 [7] Li Y Q, Wang X Y, Zhu S Y, Tang D S, He Q W and Wang X C 2022 J. Phys. Chem. Lett. 13 9654 [8] Zhu D R, Wu Y, Zhang H N, Zhu L H, Zhao S N and Wang X C 2020 Physica E 124 114214 [9] Zhao Y Z, Jia H J, Zhao S N, Wang Y B, Li H Y, Zhao Z L, Wu Y X and Wang X C 2020 Physica E 117 113817 [10] Tan J, Wang Y, Wang Z, He X, Liu Y, Wang B, Katsnelson M I and Yuan S 2019 Nano Energy 65 104058 [11] Li F, Shen T, Wang C, Zhang Y, Qi J and Zhang H 2020 Nano-Micro Letters 12 106 [12] He Q W, Zhu D Y, Tang D S, Shang X, Wang J H, Zhang G Q, Liu F and Wang X C 2024 Chin. J. Phys. 91 147 [13] Liu X, Wang R, Wang X, Zhang W, Dong Y, Du R R, Liu Y and Lin X 2024 Chin. Phys. Lett. 41 047301 [14] Jin C F, Zhang S Q, Shen Z Q and Li W L 2019 Chin. Phys. Lett. 36 107701 [15] Li J P, Jia H J, Zhu D R, Wang X C, Liu F C and Yang Y J 2019 Appl. Surf. Sci. 463 918 [16] Wu Y, Yu H X, Yang C H, Zhang H N, Zhu L H, Ma Y, Wang X C and Zhang S 2021 Int. J. Hydrogen Energ. 46 34216 [17] Liu L L, Wang Y, Chen C P, Yu H X, Zhao L S and Wang X C 2017 RSC Advances 7 40200 [18] Wang X Y, Li Y Q, Zhu S Y, Tang D S, He Q W and Wang X C 2022 J. Membrane Sci. 662 121030 [19] Gao W and Chelikowsky J R 2020 Nano Lett. 20 8346 [20] Ma N G, Zhang Y J, Zhang H N, Mu H M, Zhang Y and Wang X C 2023 Appl. Surf. Sci. 628 157315 [21] Li Y Q, Tang D S, He Q W, Shang X and Wang X C 2023 Appl. Phys. Lett. 122 193903 [22] He Q W, Wu Y, Yang C H, Zhang H N, Tang D S, Shang X and Wang X C 2023 Nanoscale 15 10458 [23] Cheng Y C, Zhu Z Y, TahirMand Schwingenschlögl U 2013 Europhys. Lett. 102 57001 [24] He Q W, Wang J H, Zhu D Y, Tang D S, Lv Z, Guo F and Wang X C 2024 Nano Lett. 24 8979 [25] Liu L, Guo X and Lee C 2021 Nano Energy 88 106304 [26] Mahmud M A P, Bazaz S R, Dabiri S, Mehrizi A A, Asadnia M, Warkiani M E and Wang Z L 2022 Adv. Mater. Technol. 7 2101347 [27] Zhou H, Zhang Y, Qiu Y, Wu H, Qin W, Liao Y, Yu Q and Cheng H 2020 Biosens. Bioelectron. 168 112569 [28] Nan Y, Tan D, Shao J, Willatzen M and Wang Z L 2021 ACS Energy Letters 6 2313 [29] Hong Y L, Liu Z B, Wang L, Zhou T Y, Ma W, Xu C, Feng S, Chen L, Chen M L, Sun D M, Chen X Q, Cheng H M and Ren W C 2020 Science 369 670 [30] Yang C, Song Z, Sun X and Lu J 2021 Phys. Rev. B 103 035308 [31] Sibatov R T, Meftakhutdinov R M and Kochaev A I 2022 Appl. Surf. Sci. 585 152465 [32] Mortazavi B, Javvaji B, Shojaei F, Rabczuk T, Shapeev A V and Zhuang X 2021 Nano Energy 82 105716 [33] Wang Y and Ding Y 2021 Appl. Phys. Lett. 119 193101 [34] Tian M, Wei C H, Zhang J L, Wang J and Yang R Z 2021 Phys. Rev. B 103 195305 [35] Mohebpour M A, Mortazavi B, Rabczuk T, Zhuang X Y, Shapeev A V and Tagani M B 2022 Phys. Rev. B 105 134108 [36] Yin Y, Gong Q, Yi M and Guo W 2023 Adv. Funct. Mater. 33 2301234 [37] Rezavand A, Ghobadi N and Behnamghader B 2022 Phys. Rev. B 106 035417 [38] Yu Y, Zhou J, Guo Z and Sun Z 2021 ACS Appl. Mater. Interfaces 13 28090 [39] Guo S D, Mu W Q, Zhu Y T, Han R Y and Ren W C 2021 J. Mater. Chem. C 9 2464 [40] Scheeper P R, van der Donk A G H, Olthuis W and Bergveld P 1994 Sensor Actuat. A-Phys. 44 1 [41] Zheng Q, Shi B, Li Z and Wang Z L 2017 Adv. Sci. 4 1700029 [42] Mahapatra S D, Mohapatra P C, Aria A I, Christie G, Mishra Y K, Hofmann S and Thakur V K 2021 Adv. Sci. 8 e2100864 [43] Park D Y, Joe D J, Kim D H, Park H, Han J H, Jeong C K, Park H, Park J G, Joung B and Lee K J 2017 Adv. Mater. 29 1702308 [44] Kaur A, Sharma S, Nandi P and De Sarkar A 2023 Physica E 154 115791 [45] Zhang S, Zhou J, Wang Q, Chen X, Kawazoe Y and Jena P 2015 Proc. Natl. Acad. Sci. USA 112 2372 [46] Yafei Li Z Z, Shengbai Zhang and Zhongfang Chen 2008 J. Am. Chem. Soc. 130 16739 [47] Cahangirov S, Topsakal M, Aktürk E, Ş ahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804 [48] Wu T and Wang J 2019 Nano Energy 66 104070 [49] Shen C,Wang L,Wei D, Zhang Y, Qin G, Chen X Q and Zhang H 2022 Phys. Chem. Chem. Phys. 24 3086 [50] Jiang J W, Wang B S, Wang J S and Park H S 2015 J. Phys. Condens. Matter. 27 083001 [51] Varjovi M J, Ershadrad S and Sanyal B 2023 Phys. Rev. B 107 195421 [52] Cooper R C, Lee C, Marianetti C A, Wei X, Hone J and Kysar J W 2013 Phys. Rev. B 87 035423 [53] Andrew R C, Mapasha R E, Ukpong A M and Chetty N 2012 Phys. Rev. B 85 125428 [54] de Jong M, Chen W, Geerlings H, Asta M and Persson K A 2015 Sci. Data 2 150053 [55] Guo Y, Zhou S, Bai Y and Zhao J 2017 Appl. Phys. Lett. 110 163102 [56] Dai Y, Zhang X, Cui Y, Li M, Luo Y, Jiang F, Zhao R and Huang Y 2021 Nano Res. 15 209 [57] Li Y Q, Zhang H N, Yang C, Wang X Y, Zhu S Y and Wang X C 2023 Appl. Surf. Sci. 608 155202 [58] Chen Y, Liu J, Yu J, Guo Y and Sun Q 2019 Phys. Chem. Chem. Phys. 21 1207 [59] Yagmurcukardes M and Peeters F M 2020 Phys. Rev. B 101 155205
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.