Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 057701    DOI: 10.1088/1674-1056/adb7d1
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effective strategy of enhancing piezoelectricity in stable CrSiN4Sn semiconductor monolayers by atom-layer-pair effect

Qi-Wen He(贺绮雯)1,2, Dan-Yang Zhu(朱丹阳)2, Jun-Hui Wang(王俊辉)1, He-Na Zhang(张贺娜)2, Xiao Shang(尚骁)2, Shou-Xin Cui(崔守鑫)1, and Xiao-Chun Wang(王晓春)1,2,†
1 School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China;
2 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract  It is challenging to reveal the design strategy for strong piezoelectricity nano-materials used in self-powered and smart nano-devices. Through first-principles calculations, an atom-layer-pair effect is found in MoSixNyRz monolayers with remarkable piezoelectricity. The absolute values of the vertical piezoelectric coefficients have a linear relation with the total electronegativity difference dipole moments. Based on this effect, a promising CrSiN4Sn monolayer is found with the highest piezoelectricity among the above monolayers. The work expands our understanding of the piezoelectric physical mechanism and provides the design strategy for piezoelectric nano-devices.
Keywords:  piezoelectricity      first-principles calculation      two-dimensional (2D) material  
Received:  04 December 2024      Revised:  07 February 2025      Accepted manuscript online:  19 February 2025
PACS:  77.65.-j (Piezoelectricity and electromechanical effects)  
  71.15.-m (Methods of electronic structure calculations)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11474123).
Corresponding Authors:  Xiao-Chun Wang     E-mail:  wangxiaochun@tsinghua.org.cn

Cite this article: 

Qi-Wen He(贺绮雯), Dan-Yang Zhu(朱丹阳), Jun-Hui Wang(王俊辉), He-Na Zhang(张贺娜), Xiao Shang(尚骁), Shou-Xin Cui(崔守鑫), and Xiao-Chun Wang(王晓春) Effective strategy of enhancing piezoelectricity in stable CrSiN4Sn semiconductor monolayers by atom-layer-pair effect 2025 Chin. Phys. B 34 057701

[1] Qiao H, Wang C, Choi W S, Park M H and Kim Y 2021 Mat. Sci. Eng. R 145 100622
[2] Jia H J, Mu H M, Li J P, Zhao Y Z, Wu Y X and Wang X C 2018 Phys. Chem. Chem. Phys. 20 26288
[3] Wu Y, Yang C H, Zhang H N, Zhu L H, Wang X Y, Li Y Q, Zhu S Y and Wang X C 2022 Appl. Surf. Sci. 589 152999
[4] Zhang H N, Wu Y, Yang C, Zhu L H and Wang X C 2021 Phys. Rev. B 104 235437
[5] Zhang H N, Yang C, Li Y Q, Zhu S Y, Wang X Y, He Q W, Tang D S and Wang X C 2022 Appl. Phys. Lett. 121 143504
[6] Li Y Q, Wang X Y, Zhu S Y, Tang D S, He Q W and Wang X C 2022 J. Mater. Chem. C 10 12132
[7] Li Y Q, Wang X Y, Zhu S Y, Tang D S, He Q W and Wang X C 2022 J. Phys. Chem. Lett. 13 9654
[8] Zhu D R, Wu Y, Zhang H N, Zhu L H, Zhao S N and Wang X C 2020 Physica E 124 114214
[9] Zhao Y Z, Jia H J, Zhao S N, Wang Y B, Li H Y, Zhao Z L, Wu Y X and Wang X C 2020 Physica E 117 113817
[10] Tan J, Wang Y, Wang Z, He X, Liu Y, Wang B, Katsnelson M I and Yuan S 2019 Nano Energy 65 104058
[11] Li F, Shen T, Wang C, Zhang Y, Qi J and Zhang H 2020 Nano-Micro Letters 12 106
[12] He Q W, Zhu D Y, Tang D S, Shang X, Wang J H, Zhang G Q, Liu F and Wang X C 2024 Chin. J. Phys. 91 147
[13] Liu X, Wang R, Wang X, Zhang W, Dong Y, Du R R, Liu Y and Lin X 2024 Chin. Phys. Lett. 41 047301
[14] Jin C F, Zhang S Q, Shen Z Q and Li W L 2019 Chin. Phys. Lett. 36 107701
[15] Li J P, Jia H J, Zhu D R, Wang X C, Liu F C and Yang Y J 2019 Appl. Surf. Sci. 463 918
[16] Wu Y, Yu H X, Yang C H, Zhang H N, Zhu L H, Ma Y, Wang X C and Zhang S 2021 Int. J. Hydrogen Energ. 46 34216
[17] Liu L L, Wang Y, Chen C P, Yu H X, Zhao L S and Wang X C 2017 RSC Advances 7 40200
[18] Wang X Y, Li Y Q, Zhu S Y, Tang D S, He Q W and Wang X C 2022 J. Membrane Sci. 662 121030
[19] Gao W and Chelikowsky J R 2020 Nano Lett. 20 8346
[20] Ma N G, Zhang Y J, Zhang H N, Mu H M, Zhang Y and Wang X C 2023 Appl. Surf. Sci. 628 157315
[21] Li Y Q, Tang D S, He Q W, Shang X and Wang X C 2023 Appl. Phys. Lett. 122 193903
[22] He Q W, Wu Y, Yang C H, Zhang H N, Tang D S, Shang X and Wang X C 2023 Nanoscale 15 10458
[23] Cheng Y C, Zhu Z Y, TahirMand Schwingenschlögl U 2013 Europhys. Lett. 102 57001
[24] He Q W, Wang J H, Zhu D Y, Tang D S, Lv Z, Guo F and Wang X C 2024 Nano Lett. 24 8979
[25] Liu L, Guo X and Lee C 2021 Nano Energy 88 106304
[26] Mahmud M A P, Bazaz S R, Dabiri S, Mehrizi A A, Asadnia M, Warkiani M E and Wang Z L 2022 Adv. Mater. Technol. 7 2101347
[27] Zhou H, Zhang Y, Qiu Y, Wu H, Qin W, Liao Y, Yu Q and Cheng H 2020 Biosens. Bioelectron. 168 112569
[28] Nan Y, Tan D, Shao J, Willatzen M and Wang Z L 2021 ACS Energy Letters 6 2313
[29] Hong Y L, Liu Z B, Wang L, Zhou T Y, Ma W, Xu C, Feng S, Chen L, Chen M L, Sun D M, Chen X Q, Cheng H M and Ren W C 2020 Science 369 670
[30] Yang C, Song Z, Sun X and Lu J 2021 Phys. Rev. B 103 035308
[31] Sibatov R T, Meftakhutdinov R M and Kochaev A I 2022 Appl. Surf. Sci. 585 152465
[32] Mortazavi B, Javvaji B, Shojaei F, Rabczuk T, Shapeev A V and Zhuang X 2021 Nano Energy 82 105716
[33] Wang Y and Ding Y 2021 Appl. Phys. Lett. 119 193101
[34] Tian M, Wei C H, Zhang J L, Wang J and Yang R Z 2021 Phys. Rev. B 103 195305
[35] Mohebpour M A, Mortazavi B, Rabczuk T, Zhuang X Y, Shapeev A V and Tagani M B 2022 Phys. Rev. B 105 134108
[36] Yin Y, Gong Q, Yi M and Guo W 2023 Adv. Funct. Mater. 33 2301234
[37] Rezavand A, Ghobadi N and Behnamghader B 2022 Phys. Rev. B 106 035417
[38] Yu Y, Zhou J, Guo Z and Sun Z 2021 ACS Appl. Mater. Interfaces 13 28090
[39] Guo S D, Mu W Q, Zhu Y T, Han R Y and Ren W C 2021 J. Mater. Chem. C 9 2464
[40] Scheeper P R, van der Donk A G H, Olthuis W and Bergveld P 1994 Sensor Actuat. A-Phys. 44 1
[41] Zheng Q, Shi B, Li Z and Wang Z L 2017 Adv. Sci. 4 1700029
[42] Mahapatra S D, Mohapatra P C, Aria A I, Christie G, Mishra Y K, Hofmann S and Thakur V K 2021 Adv. Sci. 8 e2100864
[43] Park D Y, Joe D J, Kim D H, Park H, Han J H, Jeong C K, Park H, Park J G, Joung B and Lee K J 2017 Adv. Mater. 29 1702308
[44] Kaur A, Sharma S, Nandi P and De Sarkar A 2023 Physica E 154 115791
[45] Zhang S, Zhou J, Wang Q, Chen X, Kawazoe Y and Jena P 2015 Proc. Natl. Acad. Sci. USA 112 2372
[46] Yafei Li Z Z, Shengbai Zhang and Zhongfang Chen 2008 J. Am. Chem. Soc. 130 16739
[47] Cahangirov S, Topsakal M, Aktürk E, Ş ahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[48] Wu T and Wang J 2019 Nano Energy 66 104070
[49] Shen C,Wang L,Wei D, Zhang Y, Qin G, Chen X Q and Zhang H 2022 Phys. Chem. Chem. Phys. 24 3086
[50] Jiang J W, Wang B S, Wang J S and Park H S 2015 J. Phys. Condens. Matter. 27 083001
[51] Varjovi M J, Ershadrad S and Sanyal B 2023 Phys. Rev. B 107 195421
[52] Cooper R C, Lee C, Marianetti C A, Wei X, Hone J and Kysar J W 2013 Phys. Rev. B 87 035423
[53] Andrew R C, Mapasha R E, Ukpong A M and Chetty N 2012 Phys. Rev. B 85 125428
[54] de Jong M, Chen W, Geerlings H, Asta M and Persson K A 2015 Sci. Data 2 150053
[55] Guo Y, Zhou S, Bai Y and Zhao J 2017 Appl. Phys. Lett. 110 163102
[56] Dai Y, Zhang X, Cui Y, Li M, Luo Y, Jiang F, Zhao R and Huang Y 2021 Nano Res. 15 209
[57] Li Y Q, Zhang H N, Yang C, Wang X Y, Zhu S Y and Wang X C 2023 Appl. Surf. Sci. 608 155202
[58] Chen Y, Liu J, Yu J, Guo Y and Sun Q 2019 Phys. Chem. Chem. Phys. 21 1207
[59] Yagmurcukardes M and Peeters F M 2020 Phys. Rev. B 101 155205
[1] Pressure-driven crystal structure evolution in RbB2C4 compounds
Jinyu Liu(刘金禹), Ailing Liu(刘爱玲), Yujia Wang(王雨佳), Lili Gao(高丽丽), Xiangyi Luo(罗香怡), and Miao Zhang(张淼). Chin. Phys. B, 2025, 34(4): 046201.
[2] Unveiling the role of high-order anharmonicity in thermal expansion: A first-principles perspective
Tianxu Zhang(张天旭), Kun Zhou(周琨), Yingjian Li(李英健), Chenhao Yi(易晨浩), Muhammad Faizan, Yuhao Fu(付钰豪), Xinjiang Wang(王新江), and Lijun Zhang(张立军). Chin. Phys. B, 2025, 34(4): 046301.
[3] Strain-modulated superconductivity of monolayer Tc2B2
Zhengtao Liu(刘正涛), Zihan Zhang(张子涵), Hao Song(宋昊), Tian Cui(崔田), and Defang Duan(段德芳). Chin. Phys. B, 2025, 34(4): 047104.
[4] Emergence of metal-semiconductor phase transition in MX2(M = Ni, Pd, Pt; X = S, Se, Te) moiré superlattices
Jie Li(李杰), Rui-Zi Zhang(张瑞梓), Jinbo Pan(潘金波), Ping Chen(陈平), and Shixuan Du(杜世萱). Chin. Phys. B, 2025, 34(3): 037302.
[5] Phonon-mediated superconductivity in orthorhombic XS (X = Nb, Ta or W)
Guo-Hua Liu(刘国华), Kai-Yue Jiang(江恺悦), Yi Wan(万一), Shu-Xiang Qiao(乔树祥), Jin-Han Tan(谭锦函), Na Jiao(焦娜), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(2): 027401.
[6] Stable structures and properties of Ru2Al5
Jing Luo(罗晶), Meiguang Zhang(张美光), Xiaofei Jia(贾晓菲), and Qun Wei(魏群). Chin. Phys. B, 2025, 34(1): 016301.
[7] Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC
Lei Fu(伏磊), Shasha Li(李沙沙), Xiangyan Bo(薄祥䶮), Sai Ma(马赛), Feng Li(李峰), and Yong Pu(普勇). Chin. Phys. B, 2024, 33(9): 096301.
[8] Strain-tuned electronic and valley-related properties in Janus monolayers of SWSiX2 (X = N, P, As)
Yunxi Qi(戚云西), Jun Zhao(赵俊), and Hui Zeng(曾晖). Chin. Phys. B, 2024, 33(9): 096302.
[9] Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials
Qian Wang(王乾), Da-Wei Wu(邬大为), Guang-Hua Guo(郭光华), Meng-Qiu Long(龙孟秋), and Yun-Peng Wang(王云鹏). Chin. Phys. B, 2024, 33(9): 097507.
[10] Lewis acid-doped transition metal dichalcogenides for ultraviolet-visible photodetectors
Heng Yang(杨恒), Mingjun Ma(马明军), Yongfeng Pei(裴永峰), Yufan Kang(康雨凡), Jialu Yan(延嘉璐), Dong He(贺栋), Changzhong Jiang(蒋昌忠), Wenqing Li(李文庆), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2024, 33(9): 098501.
[11] Electronic transport evolution across the successive structural transitions in Ni50-xFexTi50 shape memory alloys
Ping He(何萍), Jinying Yang(杨金颖), Qiusa Ren(任秋飒), Binbin Wang(王彬彬), Guangheng Wu(吴光恒), and Enke Liu(刘恩克). Chin. Phys. B, 2024, 33(7): 077201.
[12] Regulating the dopant clustering in LiZnAs-based diluted magnetic semiconductor
Zihang Jia(贾子航), Bo Zhou(周波), Zhenyi Jiang(姜振益), and Xiaodong Zhang(张小东). Chin. Phys. B, 2024, 33(5): 058101.
[13] Spin direction dependent quantum anomalous Hall effect in two-dimensional ferromagnetic materials
Yu-Xian Yang(杨宇贤) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(4): 047101.
[14] Optical properties of La2O3 and HfO2 for radiative cooling via multiscale simulations
Lihao Wang(王礼浩), Wanglin Yang(杨旺霖), Zhongyang Wang(王忠阳), Hongchao Li(李鸿超), Hao Gong(公昊), Jingyi Pan(潘静怡), Tongxiang Fan(范同祥), and Xiao Zhou(周啸). Chin. Phys. B, 2024, 33(12): 127801.
[15] Higher-order topological corner states and origin in monolayer LaBrO
Qing Wang(王庆) and Ning Hao(郝宁). Chin. Phys. B, 2024, 33(12): 127303.
No Suggested Reading articles found!