1 Department of Physics, Wenzhou University, Zhejiang 325035, China; 2 School of Physics and Optoelectronics Engineering, Anhui University, Hefei 230601, China; 3 International Quantum Academy, Shenzhen 518048, China
Abstract Microwave-optical entanglement is essential for efficient quantum communication, secure information transfer, and integrating microwave and optical quantum systems to advance hybrid quantum technologies. In this work, we demonstrate how the magnon Kerr effect can be harnessed to generate and control nonreciprocal entanglement in cavity optomagnomechanics (COMM). This effect induces magnon frequency shifts and introduces pair-magnon interactions, both of which are tunable through the magnetic field direction, enabling nonreciprocal behavior. By adjusting system parameters such as magnon frequency detuning, we show that magnon-phonon, microwave-optical photon-photon, and optical photon-magnon entanglement can be nonreciprocally enhanced and rendered more robust against thermal noise. Additionally, the nonreciprocity of entanglement can be selectively controlled, and ideal nonreciprocal entanglement is achievable. This work paves the way for designing nonreciprocal quantum devices across the microwave and optical regimes, leveraging the unique properties of the magnon Kerr effect in COMM.
Fund: WX is supported by the Natural Science Foundation of Zhejiang Province (Grant No. LY24A040004), the “Pioneer” and “Leading Goose” R&D Program of Zhejiang (Grant No. 2025C01028), and the Shenzhen International Quantum Academy (Grant No. SIQA2024KFKT010). YWW is supported by the Natural Science Foundation of Zhejiang Province (Grant No. LY23A40002) andWenzhou Science and Technology Plan Project (Grant No. L20240004).
Ming-Yue Liu(刘明月), Yuan Gong(龚媛), Jiaojiao Chen(陈姣姣), Yan-Wei Wang(王艳伟), and Wei Xiong(熊伟) Nonreciprocal microwave-optical entanglement in Kerr-modified cavity optomagnomechanics 2025 Chin. Phys. B 34 057202
[1] Rameshti B Z, Kusminskiy S V, Haigh J A, Usami K, Lachance- Quirion D, Nakamura Y, Hu C M, Tang H X, Bauer G E and Blanter Y M 2022 Phys. Rep. 979 1 [2] Yuan H, Cao Y, Kamra A, Duine R A and Yan P 2022 Phys. Rep. 965 1 [3] Prabhakar A and Stancil D D 2009 Spin Waves: Theory and applications (Springer) [4] Van Kranendonk J and Van Vleck J 1958 Rev. Mod. Phys. 30 1 [5] Schmidt G, Hauser C, Trempler P, Paleschke M and Papaioannou E T 2020 Phys. Status Solidi (b) 257 1900644 [6] Mallmann E, Sombra A, Goes J and Fechine P 2013 Solid State Phenom. 202 65 [7] Geller S and Gilleo M 1957 J. Phys. Chem. Solids 3 30 [8] Li Y, ZhangW, Tyberkevych V, KwokWK, Hoffmann A and Novosad V 2020 J. Appl. Phys. 128 130902 [9] Huebl H, Zollitsch C W, Lotze J, Hocke F, Greifenstein M, Marx A, Gross R and Goennenwein S T 2013 Phys. Rev. Lett. 111 127003 [10] Tabuchi Y, Ishino S, Ishikawa T, Yamazaki R, Usami K and Nakamura Y 2014 Phys. Rev. Lett. 113 083603 [11] Zhang X, Zou C L, Jiang L and Tang H X 2014 Phys. Rev. Lett. 113 156401 [12] Zhang X, Zou C L, Zhu N, Marquardt F, Jiang L and Tang H X 2015 Nat. Commun. 6 8914 [13] Zhang D, Luo X Q, Wang Y P, Li T F and You J 2017 Nat. Commun. 8 1368 [14] Zhang X, Ding K, Zhou X, Xu J and Jin D 2019 Phys. Rev. Lett. 123 237202 [15] Zhao J, Liu Y, Wu L, Duan C K, Liu Y X and Du J 2020 Phys. Rev. Appl. 13 014053 [16] Sadovnikov A V, Zyablovsky A A, Dorofeenko A V and Nikitov S A 2022 Phys. Rev. Appl. 18 024073 [17] Liu H, Sun D, Zhang C, Groesbeck M, Mclaughlin R and Vardeny Z V 2019 Sci. Adv. 5 eaax9144 [18] Cao Y and Yan P 2019 Phys. Rev. B 99 214415 [19] Yang Z B, Liu X D, Yin X Y, Ming Y, Liu H Y and Yang R C 2021 Phys. Rev. Appl. 15 024042 [20] Wang Y P, Rao J, Yang Y, Xu P C, Gui Y, Yao B, You J and Hu C M 2019 Phys. Rev. Lett. 123 127202 [21] Harder M, Yao B, Gui Y and Hu C M 2021 J. Appl. Phys. 129 201101 [22] Hei X L, Dong X L, Chen J Q, Shen C P, Qiao Y F and Li P B 2021 Phys. Rev. A 103 043706 [23] Rao J, Xu P, Gui Y,Wang Y, Yang Y, Yao B, Dietrich J, Bridges G, Fan X, Xue D, et al. 2021 Nat. Commun. 12 1933 [24] Xu D, Gu X K, Li H K, Weng Y C, Wang Y P, Li J, Wang H, Zhu S Y and You J 2023 Phys. Rev. Lett. 130 193603 [25] Xu D, Gu X K,Weng Y C, Li H K,Wang Y P, Zhu S Y and You J 2024 Quantum Science and Technology 9 035002 [26] Zuo X, Fan Z Y, Qian H, DingMS, Tan H, Xiong H and Li J 2024 New J. Phys. 26 031201 [27] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391 [28] Vitali D, Gigan S, Ferreira A, Böhm H, Tombesi P, Guerreiro A, Vedral V, Zeilinger F A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405 [29] Xiong W, Li Z, Zhang G Q, Wang M, Li H C, Luo X Q and Chen J 2022 Phys. Rev. A 106 033518 [30] Xiong W, Li Z, Song Y, Chen J, Zhang G Q and Wang M 2021 Phys. Rev. A 104 063508 [31] Xiong W, Jin D Y, Qiu Y, Lam C H and You J 2016 Phys. Rev. A 93 023844 [32] Kani A, Sarma B and Twamley J 2022 Phys. Rev. Lett. 128 013602 [33] Li J, Zhu S Y and Agarwal G 2018 Phys. Rev. Lett. 121 203601 [34] Li J, Zhu S Y and Agarwal G 2019 Phys. Rev. A 99 021801 [35] Lu T X, Zhang H, Zhang Q and Jing H 2021 Phys. Rev. A 103 063708 [36] He W D, Fan X H, Liu M Y, Zhang G Q, Li H C and Xiong W 2025 Adv. Quantum Tech. 8 2400275 [37] Fan Z Y, Qiu L, Gröblacher S and Li J 2023 Laser & Photonics Reviews 17 2200866 [38] Fan Z Y, Shen R C, Wang Y P, Li J and You J 2022 Phys. Rev. A 105 033507 [39] Zhang G, Wang Y and You J 2019 Science China Physics, Mechanics & Astronomy 62 14601 [40] Wang Y P, Zhang G Q, Zhang D, Luo X Q, Xiong W, Wang S P, Li T F, Hu C M and You J 2016 Phys. Rev. B 94 224410 [41] Wang Y P, Zhang G Q, Zhang D, Li T F, Hu C M and You J 2018 Phys. Rev. Lett. 120 057202 [42] Zheng S, Wang Z, Wang Y, Sun F, He Q, Yan P and Yuan H 2023 J. Appl. Phys. 134 151101 [43] Shen R C, Li J, Fan Z Y,Wang Y P and You J 2022 Phys. Rev. Lett. 129 123601 [44] Bi M, Yan X, Zhang Y and Xiao Y 2021 Phys. Rev. B 103 104411 [45] XiongW, Tian M, Zhang G Q and You J 2022 Phys. Rev. B 105 245310 [46] Xiong W, Wang M, Zhang G Q and Chen J 2023 Phys. Rev. A 107 033516 [47] HeWD, Fan X H, Liu M Y,Wang M F, Zhang G Q, Li H C and Xiong W 2025 Opt. Lett. 50 1516 [48] Zhang G Q, Chen Z, Xiong W, Lam C H and You J 2021 Phys. Rev. B 104 064423 [49] Liu G, Xiong W and Ying Z J 2023 Phys. Rev. A 108 033704 [50] Chen J, Fan X G, Xiong W, Wang D and Ye L 2024 Phys. Rev. A 109 043512 [51] Chen J, Fan X G, Xiong W, Wang D and Ye L 2023 Phys. Rev. B 108 024105 [52] Zhong C, Han X, Tang H X and Jiang L 2020 Phys. Rev. A 101 032345 [53] Barzanjeh S, Abdi M, Milburn G J, Tombesi P and Vitali D 2012 Phys. Rev. Lett. 109 130503 [54] Wu J, Cui C, Fan L and Zhuang Q 2021 Phys. Rev. Appl. 16 064044 [55] Zhong C, Wang Z, Zou C, Zhang M, Han X, Fu W, Xu M, Shankar S, Devoret M H, Tang H X, et al. 2020 Phys. Rev. Lett. 124 010511 [56] Meesala S, Lake D, Wood S, Chiappina P, Zhong C, Beyer A D, Shaw M D, Jiang L and Painter O 2024 Phys. Rev. X 14 031055 [57] Wei T, Wu D, Miao Q, Yang C and Luo J 2022 Opt. Express 30 10135 [58] Sahu R, Qiu L, Hease W, Arnold G, Minoguchi Y, Rabl P and Fink J M 2023 Science 380 718 [59] Zheng Q, Zhong W, Cheng G and Chen A 2024 J. Appl. Phys. 135 084401 [60] Zuo X, Fan Z Y, Qian H, DingMS, Tan H, Xiong H and Li J 2024 New J. Phys. 26 031201 [61] Li H T, Fan Z Y, Zhu H B, Gröblacher S and Li J 2025 Laser & Photonics Reviews 2401348 [62] Fan X H, Zhang Y N, Yu J P, Liu M Y, He W D, Li H C and Xiong W 2024 Adv. Quantum Tech. 7 2400043 [63] Jiao Y F, Zhang S D, Zhang Y L, Miranowicz A, Kuang L M and Jing H 2020 Phys. Rev. Lett. 125 143605 [64] Maayani S, Dahan R, Kligerman Y, Moses E, Hassan A U, Jing H, Nori F, Christodoulides D N and Carmon T 2018 Nature 558 569 [65] Malykin G B 2000 Physics-Uspekhi 43 1229 [66] Schoelkopf R and Girvin S 2008 Nature 451 664 [67] Pirandola S and Braunstein S L 2016 Nature 532 169 [68] Krastanov S, Raniwala H, Holzgrafe J, Jacobs K, Lončar M, Reagor M J and Englund D R 2021 Phys. Rev. Lett. 127 040503 [69] Agustí J, Minoguchi Y, Fink J M and Rabl P 2022 Phys. Rev. A 105 062454 [70] Xiang Z L, Ashhab S, You J and Nori F 2013 Rev. Mod. Phys. 85 623 [71] Clerk A, Lehnert K, Bertet P, Petta J and Nakamura Y 2020 Nat. Phys. 16 257 [72] Zhang X, Zou C L, Jiang L and Tang H X 2016 Sci. Adv. 2 e1501286 [73] Benguria R and Kac M 1981 Phys. Rev. Lett. 46 1 [74] Giovannetti V and Vitali D 2001 Phys. Rev. A 63 023812 [75] DeJesus E X and Kaufman C 1987 Phys. Rev. A 35 5288 [76] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314 [77] Adesso G, Serafini A and Illuminati F 2004 Phys. Rev. A 70 022318 [78] Plenio M B 2005 Phys. Rev. Lett. 95 090503 [79] Simon R 2000 Phys. Rev. Lett. 84 2726 [80] Potts C A, Varga E, Bittencourt V A, Kusminskiy S V and Davis J P 2021 Phys. Rev. X 11 031053
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.