CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Janus monolayers Fe2SSeX2(X = Ga, In, and Tl): Robust nontrivial topology with high Chern number |
Kang Jia(贾康)1,2, Xiao-Jing Dong(董晓晶)1, Pei-Ji Wang(王培吉)1, and Chang-Wen Zhang(张昌文)1,2,† |
1 School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan 250022, China; 2 School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China |
|
|
Abstract High-performance quantum anomalous Hall (QAH) systems are crucial materials for exploring emerging quantum physics and magnetic topological phenomena. Inspired by layered FeSe materials with excellent superconducting properties, the Janus monolayers Fe$_{2}$SSe$X_{2}$ ($X ={\rm Ga}$, In and Tl) are built by the decoration of Ga, In and Tl atoms in monolayer Fe$_{2}$SSe. In first-principles calculations, Fe$_{2}$SSe$X_{2}$ have stable structures and prefer ferromagnetic (FM) ordering, and can be considered as Weyl semimetals without spin-orbit coupling. For out-of-plane (OOP) magnetic anisotropy, large nontrivial gaps are opened and the Fe$_{2}$SSe$X_{2}$ are predicted to be large-gap QAH insulators with a high Chern number $C = 2$, proved by two chiral edge states and Berry curvature. When the magnetization is flipped, the two chiral edge states can be simultaneously changed and $C =-2$ can be obtained, revealing the fascinating behavior of chiral spin-edge state locking. It is found that the QAH properties of Fe$_{2}$SSe$X_{2}$ are robust against strain. In particular, nontrivial topological quantum states can spontaneously appear for Fe$_{2}$SSeGa$_{2}$ and Fe$_{2}$SSeIn$_{2}$ because the orientations of the easy magnetic axis are adjusted from in-plane to OOP by the biaxial strain. Our studies provide excellent candidate systems to realize QAH properties with a high Chern number, and suggest more experimental explorations combining superconductivity and topology.
|
Received: 29 May 2024
Revised: 15 September 2024
Accepted manuscript online: 18 September 2024
|
PACS:
|
71.15.-m
|
(Methods of electronic structure calculations)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52173283 and 62071200), Taishan Scholar Program of Shandong Province (Grant No. ts20190939), and Independent Cultivation Program of Innovation Team of Jinan City (Grant No. 2021GXRC043). |
Corresponding Authors:
Chang-Wen Zhang
E-mail: ss_zhangchw@ujn.edu.cn
|
Cite this article:
Kang Jia(贾康), Xiao-Jing Dong(董晓晶), Pei-Ji Wang(王培吉), and Chang-Wen Zhang(张昌文) Janus monolayers Fe2SSeX2(X = Ga, In, and Tl): Robust nontrivial topology with high Chern number 2024 Chin. Phys. B 33 127103
|
[1] Haldane F D M 2017 Rev. Mod. Phys. 89 040502 [2] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 [3] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 [4] Haldane F D M 1988 Phys. Rev. Lett. 61 2015 [5] Li T, Jiang S, Shen B, Zhang Y, Li L, Tao Z, Devakul T, Watanabe K, Taniguchi T, Fu L, Shan J and Mak K F 2021 Nature 600 641 [6] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H and Zhang Y 2020 Science 367 895 [7] Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A F 2020 Science 367 900 [8] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005 [9] Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys. 90 015001 [10] You J Y, Chen C, Zhang Z, Sheng X L, Yang S A and Su G 2019 Phys. Rev. B 100 064408 [11] Li G G, Xie R R, Ding L J, Ji W X, Li S S, Zhang C W, Li P and Wang P J 2021 Phys. Chem. Chem. Phys. 23 12068 [12] Jin L, Wang L, Zhang X, Liu Y, Dai X, Gao H and Liu G 2021 Nanoscale 13 5901 [13] Zhang S J, Zhang C W, Zhang S F, Ji W X, Li P, Wang P J, Li S S and Yan S S 2017 Phys. Rev. B 96 205433 [14] Li S S, Ji W X, Hu S J, Zhang C W and Yan S S 2017 ACS Appl. Mater. Interfaces 9 41443 [15] Jia K, Dong X J, Li S S, Ji W X and Zhang C W 2023 Nanoscale 15 8395 [16] Wu B, Song Y L, Ji W X, Wang P J, Zhang S F and Zhang C W 2023 Phys. Rev. B 107 214419 [17] Han Y T, Ji W X, Wang P J, Li P and Zhang C W 2023 Nanoscale 15 6830 [18] Jia K, Dong X J, Li S S, Ji W X and Zhang C W 2023 ACS Appl. Nano Mater. 6 14003 [19] Sun H, Li S S, Ji W X and Zhang C W 2022 Phys. Rev. B 105 195112 [20] Jia K, Dong X J, Li S S, Ji W X and Zhang C W 2024 Nanoscale 16 8639 [21] Song C L, Wang Y L, Jiang Y P, Li Z, Wang L, He K, Chen X, Ma X C and Xue Q K 2011 Phys. Rev. B 84 020503 [22] Fang M H, Wang H D, Dong C H, Li Z J, Feng C M, Chen J and Yuan H Q 2011 Europhys. Lett. 94 27009 [23] Burrard-Lucas M, Free D G, Sedlmaier S J, Wright J D, Cassidy S J, Hara Y, Corkett A J, Lancaster T, Baker P J, Blundell S J and Clarke S J 2013 Nat. Mater. 12 15 [24] He S, He J, Zhang W, et al. 2013 Nat. Mater. 12 605 [25] Tan S, Zhang Y, Xia M, Ye Z, Chen F, Xie X, Peng R, Xu D, Fan Q, Xu H, Jiang J, Zhang T, Lai X, Xiang T, Hu J, Xie B and Feng D 2013 Nat. Mater. 12 634 [26] Ge J F, Liu Z L, Liu C, Gao C L, Qian D, Xue Q K, Liu Y and Jia J F 2015 Nat. Mater. 14 285 [27] He K, Wang Y and Xue Q K 2018 Annu. Rev. Condens. Matter Phys. 9 329 [28] Ren Y, Qiao Z and Niu Q 2016 Rep. Prog. Phys. 79 066501 [29] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766 [30] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801 [31] Chen P, Pai W W, Chan Y H, Sun W L, Xu C Z, Lin D S, Chou M Y, Fedorov A V and Chiang T C 2018 Nat. Commun. 9 2003 [32] Ge J, Liu Y, Li J, Li H, Luo T, Wu Y, Xu Y and Wang J 2020 Natl. Sci. Rev. 7 1280 [33] Miert G V, Smith C M and Juricic V 2014 Phys. Rev. B 90 081406 [34] Cai T, Li X, Wang F, Ju S, Feng J and Gong C D 2015 Nano Lett. 15 6434 [35] Song Y J, Ahn K H, Pickett W E and Lee K W 2016 Phys. Rev. B 94 125134 [36] Kong X, Li L, Leenaerts O, Wang W, Liu X J and Peeters F M 2018 Nanoscale 10 8153 [37] Blochl P E 1994 Phys. Rev. B 50 17953 [38] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251 [39] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [40] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [41] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505 [42] Liu G, Chen T, Zhou G, Xu Z and Xiao X 2023 ACS Sens. 8 1440 [43] Wu X, Vanderbilt D and Hamann D R 2005 Phys. Rev. B 72 035105 [44] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 [45] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685 [46] Wang X, Yates J R, Souza I and Vanderbilt D 2006 Phys. Rev. B 74 195118 [47] Wu Q, Zhang S, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 224 405 [48] Lu A Y, Zhu H, Xiao J, et al. 2017 Nat. Nanotechnol. 12 744 [49] Li Y, Li J H, Li Y, Ye M, Zheng F W, Zhang Z T, Fu J H, Duan W H and Xu Y 2020 Phys. Rev. Lett. 125 086401 [50] Yu M and Trinkle D R 2011 J. Chem. Phys. 134 064111 [51] Cao C, Wu M, Jiang J and Cheng H P 2010 Phys. Rev. B 81 205424 [52] Wehling T O, Lichtenstein A I and Katsnelson M I 2011 Phys. Rev. B 84 235110 [53] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133 [54] Coey J M D 2010 Magnetism and Magnetic Materials (Cambridge:Cambridge University Press) [55] Sheng K, Chen Q, Yuan H K and Wang Z Y 2022 Phys. Rev. B 105 075304 [56] Cui Q R, Zhu Y M, Liang J H, Cui P and Yang H X 2021 Phys. Rev. B 103 085421 [57] Jia K, Dong X J, Li S S, Ji W X and Zhang C W 2023 J. Mater. Chem. C 11 10359 [58] Fernández J F, Ferreira M F and Stankiewicz J 1986 Phys. Rev. B 34 292 [59] Goodenough J B 1955 Phys. Rev. 100 564 [60] Anderson P W 1959 Phys. Rev. 115 2 [61] Kanamori J 1960 J. Appl. Phys. 31 S14 [62] utic I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323 [63] Wang Y L and Ding Y 2013 Solid State Commun. 155 6 [64] Jin Y, Yan M, Dedkov Y and Voloshina E 2022 J. Mater. Chem. C 10 3812 [65] Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405 [66] Nie S, Sun Y, Prinz F B, Wang Z, Weng H, Fang Z and Dai X 2020 Phys. Rev. Lett. 124 076403 [67] Wu M 2017 2D Mater. 4 021014 [68] Liu X, Hsu H C and Liu C X 2013 Phys. Rev. Lett. 111 086802 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|