Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 127103    DOI: 10.1088/1674-1056/ad7c2a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Janus monolayers Fe2SSeX2(X = Ga, In, and Tl): Robust nontrivial topology with high Chern number

Kang Jia(贾康)1,2, Xiao-Jing Dong(董晓晶)1, Pei-Ji Wang(王培吉)1, and Chang-Wen Zhang(张昌文)1,2,†
1 School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan 250022, China;
2 School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
Abstract  High-performance quantum anomalous Hall (QAH) systems are crucial materials for exploring emerging quantum physics and magnetic topological phenomena. Inspired by layered FeSe materials with excellent superconducting properties, the Janus monolayers Fe$_{2}$SSe$X_{2}$ ($X ={\rm Ga}$, In and Tl) are built by the decoration of Ga, In and Tl atoms in monolayer Fe$_{2}$SSe. In first-principles calculations, Fe$_{2}$SSe$X_{2}$ have stable structures and prefer ferromagnetic (FM) ordering, and can be considered as Weyl semimetals without spin-orbit coupling. For out-of-plane (OOP) magnetic anisotropy, large nontrivial gaps are opened and the Fe$_{2}$SSe$X_{2}$ are predicted to be large-gap QAH insulators with a high Chern number $C = 2$, proved by two chiral edge states and Berry curvature. When the magnetization is flipped, the two chiral edge states can be simultaneously changed and $C =-2$ can be obtained, revealing the fascinating behavior of chiral spin-edge state locking. It is found that the QAH properties of Fe$_{2}$SSe$X_{2}$ are robust against strain. In particular, nontrivial topological quantum states can spontaneously appear for Fe$_{2}$SSeGa$_{2}$ and Fe$_{2}$SSeIn$_{2}$ because the orientations of the easy magnetic axis are adjusted from in-plane to OOP by the biaxial strain. Our studies provide excellent candidate systems to realize QAH properties with a high Chern number, and suggest more experimental explorations combining superconductivity and topology.
Keywords:  Weyl semimetal      high Chern number      chiral spin-edge state locking      robust  
Received:  29 May 2024      Revised:  15 September 2024      Accepted manuscript online:  18 September 2024
PACS:  71.15.-m (Methods of electronic structure calculations)  
  75.30.Gw (Magnetic anisotropy)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52173283 and 62071200), Taishan Scholar Program of Shandong Province (Grant No. ts20190939), and Independent Cultivation Program of Innovation Team of Jinan City (Grant No. 2021GXRC043).
Corresponding Authors:  Chang-Wen Zhang     E-mail:  ss_zhangchw@ujn.edu.cn

Cite this article: 

Kang Jia(贾康), Xiao-Jing Dong(董晓晶), Pei-Ji Wang(王培吉), and Chang-Wen Zhang(张昌文) Janus monolayers Fe2SSeX2(X = Ga, In, and Tl): Robust nontrivial topology with high Chern number 2024 Chin. Phys. B 33 127103

[1] Haldane F D M 2017 Rev. Mod. Phys. 89 040502
[2] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[3] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[4] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[5] Li T, Jiang S, Shen B, Zhang Y, Li L, Tao Z, Devakul T, Watanabe K, Taniguchi T, Fu L, Shan J and Mak K F 2021 Nature 600 641
[6] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H and Zhang Y 2020 Science 367 895
[7] Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A F 2020 Science 367 900
[8] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005
[9] Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys. 90 015001
[10] You J Y, Chen C, Zhang Z, Sheng X L, Yang S A and Su G 2019 Phys. Rev. B 100 064408
[11] Li G G, Xie R R, Ding L J, Ji W X, Li S S, Zhang C W, Li P and Wang P J 2021 Phys. Chem. Chem. Phys. 23 12068
[12] Jin L, Wang L, Zhang X, Liu Y, Dai X, Gao H and Liu G 2021 Nanoscale 13 5901
[13] Zhang S J, Zhang C W, Zhang S F, Ji W X, Li P, Wang P J, Li S S and Yan S S 2017 Phys. Rev. B 96 205433
[14] Li S S, Ji W X, Hu S J, Zhang C W and Yan S S 2017 ACS Appl. Mater. Interfaces 9 41443
[15] Jia K, Dong X J, Li S S, Ji W X and Zhang C W 2023 Nanoscale 15 8395
[16] Wu B, Song Y L, Ji W X, Wang P J, Zhang S F and Zhang C W 2023 Phys. Rev. B 107 214419
[17] Han Y T, Ji W X, Wang P J, Li P and Zhang C W 2023 Nanoscale 15 6830
[18] Jia K, Dong X J, Li S S, Ji W X and Zhang C W 2023 ACS Appl. Nano Mater. 6 14003
[19] Sun H, Li S S, Ji W X and Zhang C W 2022 Phys. Rev. B 105 195112
[20] Jia K, Dong X J, Li S S, Ji W X and Zhang C W 2024 Nanoscale 16 8639
[21] Song C L, Wang Y L, Jiang Y P, Li Z, Wang L, He K, Chen X, Ma X C and Xue Q K 2011 Phys. Rev. B 84 020503
[22] Fang M H, Wang H D, Dong C H, Li Z J, Feng C M, Chen J and Yuan H Q 2011 Europhys. Lett. 94 27009
[23] Burrard-Lucas M, Free D G, Sedlmaier S J, Wright J D, Cassidy S J, Hara Y, Corkett A J, Lancaster T, Baker P J, Blundell S J and Clarke S J 2013 Nat. Mater. 12 15
[24] He S, He J, Zhang W, et al. 2013 Nat. Mater. 12 605
[25] Tan S, Zhang Y, Xia M, Ye Z, Chen F, Xie X, Peng R, Xu D, Fan Q, Xu H, Jiang J, Zhang T, Lai X, Xiang T, Hu J, Xie B and Feng D 2013 Nat. Mater. 12 634
[26] Ge J F, Liu Z L, Liu C, Gao C L, Qian D, Xue Q K, Liu Y and Jia J F 2015 Nat. Mater. 14 285
[27] He K, Wang Y and Xue Q K 2018 Annu. Rev. Condens. Matter Phys. 9 329
[28] Ren Y, Qiao Z and Niu Q 2016 Rep. Prog. Phys. 79 066501
[29] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[30] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[31] Chen P, Pai W W, Chan Y H, Sun W L, Xu C Z, Lin D S, Chou M Y, Fedorov A V and Chiang T C 2018 Nat. Commun. 9 2003
[32] Ge J, Liu Y, Li J, Li H, Luo T, Wu Y, Xu Y and Wang J 2020 Natl. Sci. Rev. 7 1280
[33] Miert G V, Smith C M and Juricic V 2014 Phys. Rev. B 90 081406
[34] Cai T, Li X, Wang F, Ju S, Feng J and Gong C D 2015 Nano Lett. 15 6434
[35] Song Y J, Ahn K H, Pickett W E and Lee K W 2016 Phys. Rev. B 94 125134
[36] Kong X, Li L, Leenaerts O, Wang W, Liu X J and Peeters F M 2018 Nanoscale 10 8153
[37] Blochl P E 1994 Phys. Rev. B 50 17953
[38] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[39] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[40] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[41] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[42] Liu G, Chen T, Zhou G, Xu Z and Xiao X 2023 ACS Sens. 8 1440
[43] Wu X, Vanderbilt D and Hamann D R 2005 Phys. Rev. B 72 035105
[44] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[45] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685
[46] Wang X, Yates J R, Souza I and Vanderbilt D 2006 Phys. Rev. B 74 195118
[47] Wu Q, Zhang S, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 224 405
[48] Lu A Y, Zhu H, Xiao J, et al. 2017 Nat. Nanotechnol. 12 744
[49] Li Y, Li J H, Li Y, Ye M, Zheng F W, Zhang Z T, Fu J H, Duan W H and Xu Y 2020 Phys. Rev. Lett. 125 086401
[50] Yu M and Trinkle D R 2011 J. Chem. Phys. 134 064111
[51] Cao C, Wu M, Jiang J and Cheng H P 2010 Phys. Rev. B 81 205424
[52] Wehling T O, Lichtenstein A I and Katsnelson M I 2011 Phys. Rev. B 84 235110
[53] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
[54] Coey J M D 2010 Magnetism and Magnetic Materials (Cambridge:Cambridge University Press)
[55] Sheng K, Chen Q, Yuan H K and Wang Z Y 2022 Phys. Rev. B 105 075304
[56] Cui Q R, Zhu Y M, Liang J H, Cui P and Yang H X 2021 Phys. Rev. B 103 085421
[57] Jia K, Dong X J, Li S S, Ji W X and Zhang C W 2023 J. Mater. Chem. C 11 10359
[58] Fernández J F, Ferreira M F and Stankiewicz J 1986 Phys. Rev. B 34 292
[59] Goodenough J B 1955 Phys. Rev. 100 564
[60] Anderson P W 1959 Phys. Rev. 115 2
[61] Kanamori J 1960 J. Appl. Phys. 31 S14
[62] utic I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
[63] Wang Y L and Ding Y 2013 Solid State Commun. 155 6
[64] Jin Y, Yan M, Dedkov Y and Voloshina E 2022 J. Mater. Chem. C 10 3812
[65] Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405
[66] Nie S, Sun Y, Prinz F B, Wang Z, Weng H, Fang Z and Dai X 2020 Phys. Rev. Lett. 124 076403
[67] Wu M 2017 2D Mater. 4 021014
[68] Liu X, Hsu H C and Liu C X 2013 Phys. Rev. Lett. 111 086802
[1] Half-metallic ferromagnetic Weyl fermions related to dynamic correlations in the zinc-blende compound VAs
Xianyong Ding(丁献勇), Haoran Wei(魏皓然), Ruixiang Zhu(朱瑞翔), Xiaoliang Xiao(肖晓亮), Xiaozhi Wu(吴小志), and Rui Wang(王锐). Chin. Phys. B, 2024, 33(9): 097103.
[2] Induced magneto-conductivity in a two-node Weyl semimetal under Gaussian random disorder
Chuanxiong Xu(徐川雄), Haoping Yu(于昊平), Mei Zhou(周梅), and Xuanting Ji(吉轩廷). Chin. Phys. B, 2024, 33(9): 097502.
[3] Evolution of anomalous Hall effect in ferromagnetic Weyl semimetal NbxZr1-xCo2Sn
Bo-Wen Chen(陈博文) and Bing Shen(沈冰). Chin. Phys. B, 2024, 33(8): 087501.
[4] Photoinduced Floquet higher-order Weyl semimetal in C6 symmetric Dirac semimetals
Xin-Xin Xu(许欣欣), Zi-Ming Wang(王梓名), Dong-Hui Xu(许东辉), and Chui-Zhen Chen(陈垂针). Chin. Phys. B, 2024, 33(6): 067801.
[5] Discovery of controllable high Chern number quantum anomalous Hall state in tetragonal lattice FeSIn
Xiao-Lang Ren(任小浪) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(6): 067102.
[6] Robust optical mode converter based on topological waveguide arrays
Yu-Xiang Xu(徐宇翔), Wen-Jian Tang(唐文剑), Li-Wei Jiang(姜力炜), De-Xing Wu(吴德兴), Heng Wang(王恒), Bing-Cong Xu(许冰聪), and Lin Chen(陈林). Chin. Phys. B, 2024, 33(6): 060306.
[7] Symmetry transformation of nonlinear optical current of tilted Weyl nodes and application to ferromagnetic MnBi2Te4
Zhuo-Cheng Lu(卢倬成) and Ji Feng(冯济). Chin. Phys. B, 2024, 33(4): 047303.
[8] Percolation transitions in edge-coupled interdependent networks with directed dependency links
Yan-Li Gao(高彦丽), Hai-Bo Yu(于海波), Jie Zhou(周杰), Yin-Zuo Zhou(周银座), and Shi-Ming Chen(陈世明). Chin. Phys. B, 2023, 32(9): 098902.
[9] Robustness of community networks against cascading failures with heterogeneous redistribution strategies
Bo Song(宋波), Hui-Ming Wu(吴惠明), Yu-Rong Song(宋玉蓉), Guo-Ping Jiang(蒋国平),Ling-Ling Xia(夏玲玲), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(9): 098905.
[10] Lightweight and highly robust memristor-based hybrid neural networks for electroencephalogram signal processing
Peiwen Tong(童霈文), Hui Xu(徐晖), Yi Sun(孙毅), Yongzhou Wang(汪泳州), Jie Peng(彭杰),Cen Liao(廖岑), Wei Wang(王伟), and Qingjiang Li(李清江). Chin. Phys. B, 2023, 32(7): 078505.
[11] Stability of the topological quantum critical point between multi-Weyl semimetal and band insulator
Zhao-Kun Yang(杨兆昆), Jing-Rong Wang(王景荣), and Guo-Zhu Liu(刘国柱). Chin. Phys. B, 2023, 32(5): 056401.
[12] Doping-enhanced robustness of anomaly-related magnetoresistance in WTe2±α flakes
Jianchao Meng(孟建超), Xinxiang Chen(陈鑫祥), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Weimin Jiang(姜伟民), Zitao Zhang(张子涛), Changmin Xiong(熊昌民), Ruifen Dou(窦瑞芬), and Jiacai Nie(聂家财). Chin. Phys. B, 2023, 32(4): 047502.
[13] Exploration of growth conditions of TaAs Weyl semimetal thin film using pulsed laser deposition
Shien Li(李世恩), Zefeng Lin(林泽丰), Wei Hu(胡卫), Dayu Yan(闫大禹), Fucong Chen(陈赋聪), Xinbo Bai(柏欣博), Beiyi Zhu(朱北沂), Jie Yuan(袁洁), Youguo Shi(石友国), Kui Jin(金魁), Hongming Weng(翁红明), and Haizhong Guo(郭海中). Chin. Phys. B, 2023, 32(4): 047103.
[14] A robust method for performance evaluation of the vapor cell for magnetometry
Zhi Liu(柳治), Sheng Zou(邹升), Kaifeng Yin(尹凯峰), Tao Shi(石韬),Junjian Tang(唐钧剑), and Heng Yuan(袁珩). Chin. Phys. B, 2023, 32(4): 040703.
[15] Enhanced and tunable Imbert-Fedorov shift based on epsilon-near-zero response of Weyl semimetal
Ji-Peng Wu(伍计鹏), Yuan-Jiang Xiang(项元江), and Xiao-Yu Dai(戴小玉). Chin. Phys. B, 2023, 32(3): 037503.
No Suggested Reading articles found!