Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 040501    DOI: 10.1088/1674-1056/adaccf
GENERAL Prev   Next  

Universality of percolation at dynamic pseudocritical point

Qiyuan Shi(石骐源)1, Shuo Wei(魏硕)1, Youjin Deng(邓友金)2,1,3,†, and Ming Li(李明)4,‡
1 Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;
2 Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China;
3 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China;
4 School of Physics, Hefei University of Technology, Hefei 230009, ChinaResearch Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China;
3 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China;
4 School of Physics, Hefei University of Technology, Hefei 230009, China
Abstract  Universality, encompassing critical exponents, scaling functions, and dimensionless quantities, is fundamental to phase transition theory. In finite systems, universal behaviors are also expected to emerge at the pseudocritical point. Focusing on two-dimensional percolation, we show that the size distribution of the largest cluster asymptotically approaches to a Gumbel form in the subcritical phase, a Gaussian form in the supercritical phase, and transitions within the critical finite-size scaling window. Numerical results indicate that, at consistently defined pseudocritical points, this distribution exhibits a universal form across various lattices and percolation models (bond or site), within error bars, yet differs from the distribution at the critical point. The critical polynomial, universally zero for two-dimensional percolation at the critical point, becomes nonzero at pseudocritical points. Nevertheless, numerical evidence suggests that the critical polynomial, along with other dimensionless quantities such as wrapping probabilities and Binder cumulants, assumes fixed values at the pseudocritical point that are independent of the percolation type (bond or site) but vary with lattice structures. These findings imply that while strict universality breaks down at the pseudocritical point, certain extreme-value statistics and dimensionless quantities exhibit quasi-universality, revealing a subtle connection between scaling behaviors at critical and pseudocritical points.
Keywords:  percolation      universality      extreme-value statistics      pseudocritical point  
Received:  14 December 2024      Revised:  12 January 2025      Accepted manuscript online:  22 January 2025
PACS:  05.20.-y (Classical statistical mechanics)  
  05.10.Ln (Monte Carlo methods)  
  64.60.ah (Percolation)  
Fund: The authors acknowledge helpful discussions with Jingfang Fan. The research was supported by the National Natural Science Foundation of China (Grant No. 12275263), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301900), and Natural Science Foundation of Fujian Province of China (Grant No. 2023J02032).
Corresponding Authors:  Youjin Deng     E-mail:  yjdeng@ustc.edu.cn;lim@hfut.edu.cn

Cite this article: 

Qiyuan Shi(石骐源), Shuo Wei(魏硕), Youjin Deng(邓友金), and Ming Li(李明) Universality of percolation at dynamic pseudocritical point 2025 Chin. Phys. B 34 040501

[1] Stauffer D and Aharony A 1991 Introduction to percolation theory (Taylor & Francis)
[2] Kim S, Choi S, Oh E, Byun J, Kim H, Lee B, Lee S and Hong Y 2016 Sci. Rep. 6 34632
[3] Li M, Liu R R, Lü L, Hu M B, Xu S and Zhang Y C 2021 Phys. Rep. 907 1
[4] Ziff R M 2021 Physica A 568 125723
[5] Sykes M F and Essam J W 1964 J. Math. Phys. 5 1117
[6] Lieb E H 1967 Phys. Rev. Lett. 18 692
[7] Baxter R J 1972 Ann. Phys. 70 193
[8] Belavin A, Polyakov A and Zamolodchikov A 1984 Nucl. Phys. B 241 333
[9] Friedan D, Qiu Z and Shenker S 1984 Phys. Rev. Lett. 52 1575
[10] Nienhuis B 1984 J. Stat. Phys. 34 731
[11] Cardy J L 1986 Physica A 140 219
[12] Cardy J 2005 Ann. Phys. 318 81
[13] Smirnov S and Werner W 2001 Math. Res. Lett. 8 729
[14] Grassberger P, Christensen C, Bizhani G, Son S W and Paczuski M 2011 Phys. Rev. Lett. 106 225701
[15] D’Souza R M and Nagler J 2015 Nat. Phys. 11 531
[16] Achlioptas D, D’Souza R M and Spencer J 2009 Science 323 1453
[17] Friedman E J and Landsberg A S 2009 Phys. Rev. Lett. 103 255701
[18] Ziff R M 2009 Phys. Rev. Lett. 103 045701
[19] D’Souza R M and Mitzenmacher M 2010 Phys. Rev. Lett. 104 195702
[20] Li M, Wang J and Deng Y 2023 Phys. Rev. Lett. 130 147101
[21] Li M, Wang J and Deng Y 2024 Phys. Rev. Research 6 033319
[22] Lu M, Fang S, Zhou Z and Deng Y 2024 Phys. Rev. E 110 044140
[23] Kenna R and Berche B 2017 J. Phys. A: Math. Theor. 50 235001
[24] Borgs C, Chayes J T, van der Hofstad R, Slade G and Spencer J 2005 Random Struct. Algorithms 27 137
[25] Borgs C, Chayes J T, Slade G, Spencer J and van der Hofstad R 2005 Ann. Probab. 33 1886
[26] Heydenreich M and Van Der Hofstad R 2007 Commun. Math. Phys. 270 335
[27] Aizenman M 1997 Nucl. Phys. B 485 551
[28] Li M, Fang S, Fan J and Deng Y 2024 arXiv:2412.06228
[29] Fan J, Meng J, Liu Y, Saberi A A, Kurths J and Nagler J 2020 Nat. Phys. 16 455
[30] Langlands R P, Pichet C, Pouliot P and Saint-Aubin Y 1992 J. Stat. Phys. 67 553
[31] Pinson H T 1994 J. Stat. Phys. 75 1167
[32] Ziff R M, Lorenz C D and Kleban P 1999 Physica A 266 17
[33] Binder K 1981 Phys. Rev. Lett. 47 693
[34] Binder K 1981 Z. Phys. B 43 119
[35] Ouyang Y, Deng Y and Blöte H W J 2018 Phys. Rev. E 98 062101
[36] Newman M E J and Ziff R M 2000 Phys. Rev. Lett. 85 4104
[37] Mendelson K S 1999 Phys. Rev. E 60 6496
[38] Deng Y, Ouyang Y and Blöte H W J 2019 J. Phys.: Conf. Ser. 1163 012001
[39] Feshanjerdi M and Grassberger P 2024 arXiv:2401.05234
[40] Hu H, Blöte HWand Deng Y 2012 J. Phys. A: Math. Theor. 45 494006
[41] Qian X, Deng Y and Blöte H W J 2005 Phys. Rev. B 71 144303
[42] Deng Y and Blöte H W J 2005 Phys. Rev. E 71 016117
[43] Lu M, Song Y F, Li M and Deng Y 2024 arXiv:2411.04748
[44] Beirlant J, Goegebeur Y, Segers J and Teugels J L 2006 Statistics of extremes: Theory and applications (JohnWiley & Sons)
[1] Vital nodes identification method integrating degree centrality and cycle ratio
Yu Zhao(赵玉) and Bo Yang(杨波). Chin. Phys. B, 2025, 34(3): 038901.
[2] Triadic percolation in computer virus spreading dynamics
Jie Gao(高杰), Jianfeng Luo(罗建锋), Xing Li(李星), Yihong Li(李毅红), Zunguang Guo(郭尊光), and Xiaofeng Luo(罗晓峰). Chin. Phys. B, 2025, 34(2): 028701.
[3] Extensive numerical simulations on competitive growth between the Edwards-Wilkinson and Kardar-Parisi-Zhang universality classes
Chengzhi Yu(余成志), Xiao Liu(刘潇), Jun Tang(唐军), and Hui Xia(夏辉). Chin. Phys. B, 2024, 33(6): 060502.
[4] Percolation transitions in edge-coupled interdependent networks with directed dependency links
Yan-Li Gao(高彦丽), Hai-Bo Yu(于海波), Jie Zhou(周杰), Yin-Zuo Zhou(周银座), and Shi-Ming Chen(陈世明). Chin. Phys. B, 2023, 32(9): 098902.
[5] Phase behavior and percolation in an equilibrium system of symmetrically interacting Janus disks on the triangular lattice
Xixian Zhang(张希贤) and Hao Hu(胡皓). Chin. Phys. B, 2023, 32(8): 080502.
[6] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[7] Crystal melting processes of propylene carbonate and 1,3-propanediol investigated by the reed-vibration mechanical spectroscopy for liquids
Li-Na Wang(王丽娜), Xing-Yu Zhao(赵兴宇), Heng-Wei Zhou(周恒为), Li Zhang(张丽), Yi-Neng Huang(黄以能). Chin. Phys. B, 2019, 28(9): 096401.
[8] The affection on the nature of percolation by concentration of pentagon-heptagon defects in graphene lattice
Yuming Yang(杨宇明), Baohua Teng(滕保华). Chin. Phys. B, 2018, 27(10): 106401.
[9] Electric current-induced giant electroresistance in La0.36Pr0.265Ca0.375MnO3 thin films
Yinghui Sun(孙颖慧), Yonggang Zhao(赵永刚), Rongming Wang(王荣明). Chin. Phys. B, 2017, 26(4): 047103.
[10] Random telegraph noise on the threshold voltage of multi-level flash memory
Yiming Liao(廖轶明), Xiaoli Ji(纪小丽), Yue Xu(徐跃), Chengxu Zhang(张城绪), Qiang Guo(郭强), Feng Yan(闫锋). Chin. Phys. B, 2017, 26(1): 018502.
[11] Temperature- and voltage-dependent trap generation model in high-k metal gate MOS device with percolation simulation
Hao Xu(徐昊), Hong Yang(杨红), Yan-Rong Wang(王艳蓉), Wen-Wu Wang(王文武), Wei-Chun Luo(罗维春), Lu-Wei Qi(祁路伟), Jun-Feng Li(李俊峰), Chao Zhao(赵超), Da-Peng Chen(陈大鹏), Tian-Chun Ye(叶甜春). Chin. Phys. B, 2016, 25(8): 087306.
[12] Structural and robustness properties of smart-city transportation networks
Zhang Zhen-Gang (张振刚), Ding Zhuo (丁卓), Fan Jing-Fang (樊京芳), Meng Jun (孟君), Ding Yi-Min (丁益民), Ye Fang-Fu (叶方富), Chen Xiao-Song (陈晓松). Chin. Phys. B, 2015, 24(9): 090201.
[13] Characteristics of phase transitions via intervention in random networks
Jia Xiao (贾啸), Hong Jin-Song (洪劲松), Yang Hong-Chun (杨宏春), Yang Chun (杨春), Shi Xiao-Hong (史晓红), Hu Jian-Quan (胡建全). Chin. Phys. B, 2014, 23(7): 076401.
[14] Electrical and optical properties of indium tin oxide/epoxy composite film
Guo Xia (郭霞), Guo Chun-Wei (郭春威), Chen Yu (陈宇), Su Zhi-Ping (苏治平). Chin. Phys. B, 2014, 23(7): 076403.
[15] Percolation on networks with dependence links
Li Ming (李明), Wang Bing-Hong (汪秉宏). Chin. Phys. B, 2014, 23(7): 076402.
No Suggested Reading articles found!