Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 054202    DOI: 10.1088/1674-1056/adb8b9
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Fusion of fractional vortex pairs and their transition to integer vortex controlled by optical power

Chunzhi Sun(孙春志)1, Xiangwei Chen(陈向炜)1,†, Huizhong Xu2, and Guo Liang(梁果)1,‡
1 Henan International Joint Laboratory of Optical Information Transmission and Application, Shangqiu Normal University, Shangqiu 476000, China;
2 Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132, USA
Abstract  The evolution of fractional vortex pairs in free space and nonlocal nonlinear media is studied. In free space, the off-axis fractional vortex pairs of the-same-sign topological charge (TC) will be merged to one integer vortex at the beam center, which is drastically different from the dynamics of integer vortex pairs. In nonlocal nonlinear media, the conversion between the fractional vortex pair and the conventional integer vortex can be readily achieved by only tuning the input optical power. Therefore our approach provides a convenient way to control the number of vortices and thus the number of optical tweezers by adjusting the input optical power. These results may find potential applications in optical manipulation of particles.
Keywords:  vortex beams      orbital angular momentum      optical manipulation  
Received:  23 November 2024      Revised:  19 January 2025      Accepted manuscript online:  21 February 2025
PACS:  42.25.-p (Wave optics)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
Fund: Project supported by the International Scientific and Technological Cooperation Projects of Henan Province, China (Grant No. 242102520010), the Natural Science Foundation of Henan Province, China (Grant No. 252300421307), and the Training Program for Young Backbone Teachers of Higher Education Institutions in Henan Province, China (Grant No. 2023GGJS130).
Corresponding Authors:  Xiangwei Chen, Guo Liang     E-mail:  chenxiangwei@sqnu.edu.cn;liangguo0916@163.com

Cite this article: 

Chunzhi Sun(孙春志), Xiangwei Chen(陈向炜), Huizhong Xu, and Guo Liang(梁果) Fusion of fractional vortex pairs and their transition to integer vortex controlled by optical power 2025 Chin. Phys. B 34 054202

[1] Wang J, Yang, J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S and Tur M 2012 Nat. Photon. 6 488
[2] Padgett M and Bowman R 2011 Nat. Photon. 5 343
[3] Yang Y J, Ren Y X, Chen M Z, Arita Y and Rosales-Guzmán C 2021 Adv. Photon. 3 034001
[4] Tamburini F, Anzolin G, Umbriaco G, Bianchini A and Barbieri C 2006 Phys. Rev. Lett. 97 163903
[5] Qiu X D, Li F S, Zhang W H, Zhu Z H and Chen L X 2018 Optica 5 208
[6] Courtial J, Robertson D A, Dholakia K, Allen L and Padgett M J 1998 Phys. Rev. Lett. 81 4828
[7] Lavery M P J, Speirits F C, Barnett S M and Padgett M J 2013 Science 341 537
[8] Nicolas A, Veissier L, Giner L, Giacobino E, Maxein D and Laurat J 2014 Nat. Photon. 8 234
[9] Ding D S, Zhang W and Zhou Z Y, et al. 2015 Phys. Rev. Lett. 114 50502
[10] Otte E, Rosales-Guzmán C, Ndagano B, Denz C and Forbes A 2018 Light Sci. Appl. 7 18009
[11] Lee J H, Foo G, Johnson E G and Swartzlander G A 2006 Phys. Rev. Lett. 97 53901
[12] Tamburini F, Thidé B, Molina-Terriza G and Anzolin G 2011 Nat. Phys. 7 195
[13] Gianani I, Suprano A, Giordani T, Spagnolo N, Sciarrino F, Gorpas D, Ntziachristos V, Pinker K, Biton N, Kupferman J and Arnon S 2020 Adv. Photon. 2 036003
[14] Shen Y J, Wang X J, Xie Z W, Min C J, Fu X, Liu Q, Gong M L and Yuan X C 2019 Light: Sci. Appl. 8 90
[15] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185
[16] Garcés-Chávez V, McGloin D, Padgett M J, Dultz W, Schmitzer H and Dholakia K 2003 Phys Rev. Lett. 91 093602
[17] López-Mariscal C, Gutiérrez-Vega J C, Milne G and Dholakia K 2006 Opt. Express 14 4182
[18] Basistiy I, Bazhenov V, Soskin M S and Vasnetsov M V 1993 Opt. Commun. 103 422
[19] Indebetouw G 1993 J. Mod. Opt. 40 73
[20] Yao A M and Padgett M J 2011 Adv. Opt. Photon. 3 161
[21] Beijersbergen M W, Coerwinkel R P C, Kristensen M and Woerdman J P 1994 Opt. Commun. 112 321
[22] Basistiy I V, Soskin M S and Vasnetsov M V 1995 Opt. Commun. 119 604
[23] Vasnetsov M, Basistiy I and Soskin M 1998 Proc. SPIE 3487 29
[24] Zhang H, Zeng J, Lu X Y, Wang Z Y, Zhao C L and Cai Y J 2022 Nanophotonics 11 241
[25] Berry M V 2004 J. Opt. A: Pure Appl. Opt. 6 259
[26] Tao S H and Yuan X C 2004 J. Opt. Soc. Am. A 21 1192
[27] Alperin S N and Siemens M E 2017 Phys. Rev. Lett. 119 203902
[28] Yang Z S, Zhang X, Bai C L and Wang M H 2018 J. Opt. Soc. Am. A 35 452
[29] Hu J T, Tai Y P, Zhu L H, Long Z X, Tang M M, Li H H, Li X Z and Cai Y J 2020 Appl. Phys. Lett. 116 201107
[30] Zhu G X, Bai Z Y, Chen J Y, Huang C R, Wu L P, Fu C L and Wang Y P 2021 Opt. Express 29 28452
[31] Liu H Y, Wang Y, Wang J, Liu K and Wang H Q 2021 IEEE Antennas Wirel. Propag. Lett. 20 948
[32] Oemrawsingh S S R, Ma X, Voigt D, Aiello A, Eliel E R, Hooft GW’t and Woerdman J P 2005 Phys. Rev. Lett. 95 240501
[33] Haus H A 1984 Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, NJ)
[34] Pan X J, Zhang C F, Deng C J, Li Z L and Wang Q 2021 Res. Phys. 27 104511
[35] Snyder A W and Mitchell D J 1997 Science 276 1538
[36] Zhong W P and Belić M R 2010 Phys. Rev. E 81 056604
[37] Lu D Q, Hu W, Zheng Y J, Liang Y B, Cao L G, Lan S and Guo Q 2008 Phys. Rev. A 78 043815
[38] Liang G, Chen X W and Xu H Z 2024 Opt. Lett. 49 4871
[1] Precision flatness measurement based on orbital angular momentum
Feifei Han(韩菲菲), Zhiwan Wang(王志琬), Le Wang(王乐), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2025, 34(5): 054204.
[2] Controlled propagation and particle manipulation of off-axis-rotating elliptical Gaussian beams in strong nonlocal media
Rong-Quan Chen(陈荣泉), Rui-Lin Xiao(肖瑞林), Wei Wang(王伟), Xi-Xi Chu(储茜茜), Yu-Qing Song(宋雨晴), Xu-Dong Hu(胡旭东), and Ming Chen(陈明). Chin. Phys. B, 2025, 34(3): 034205.
[3] Mask-coding-assisted continuous-variable quantum direct communication with orbital angular momentum multiplexing
Zhengwen Cao(曹正文), Yujie Wang(王禹杰), Geng Chai(柴庚), Xinlei Chen(陈欣蕾), and Yuan Lu(卢缘). Chin. Phys. B, 2025, 34(2): 020308.
[4] Effectively modulating spatial vortex four-wave mixing in a diamond atomic system
Nuo Ba(巴诺), Ming-Qi Jiang(姜明奇), Jin-You Fei(费金友), Dan Wang(王丹), Hai-Lin Jiang(蒋海林), Lei Wang(王磊), and Hai-Hua Wang(王海华). Chin. Phys. B, 2024, 33(4): 044202.
[5] Generation of orbital angular momentum hologram using a modified U-net
Zhi-Gang Zheng(郑志刚), Fei-Fei Han(韩菲菲), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2024, 33(3): 034207.
[6] Properties of focused Laguerre-Gaussian beam propagating in anisotropic ocean turbulence
Xinguang Wang(王新光), Yangbin Ma(马洋斌), Qiujie Yuan(袁邱杰), Wei Chen(陈伟), Le Wang(王乐), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(2): 024208.
[7] Spatial quantum coherent modulation with perfect hybrid vector vortex beam based on atomic medium
Yan Ma(马燕), Xin Yang(杨欣), Hong Chang(常虹), Xin-Qi Yang(杨鑫琪), Ming-Tao Cao(曹明涛), Xiao-Fei Zhang(张晓斐), Hong Gao(高宏), Rui-Fang Dong(董瑞芳), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2024, 33(2): 024204.
[8] Optical image watermarking based on orbital angular momentum holography
Jialong Zhu(朱家龙), Jiaying Ji(季佳滢), Le Wang(王乐), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(12): 124202.
[9] Deep-learning-assisted optical communication with discretized state space of structured light
Minyang Zhang(张敏洋), Dong-Xu Chen(陈东旭), Pengxiang Ruan(阮鹏祥), Jun Liu(刘俊), Dong-Zhi Fu(付栋之), Jun-Long Zhao(赵军龙), and Chui-Ping Yang(杨垂平). Chin. Phys. B, 2024, 33(12): 120304.
[10] Dynamic properties of the magnetic skyrmion driven by electromagnetic waves with spin angular momentum and orbital angular momentum
Longfei Guo(郭龙飞), Bing Zha(查兵), Xiaoqiao Sun(孙晓乔), Songmei Ni(倪松梅), Ruiyu Huang(黄瑞玉), Lin Chen(陈琳), and Zhikuo Tao(陶志阔). Chin. Phys. B, 2024, 33(11): 117501.
[11] Bessel—Gaussian beam-based orbital angular momentum holography
Jiaying Ji(季佳滢), Zhigang Zheng(郑志刚), Jialong Zhu(朱家龙), Le Wang(王乐), Xinguang Wang(王新光), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(1): 014204.
[12] Ultraviolet metalens and metalens array of focused vortex beams
Jinping Zhang(张金平), Yan Wang(王焱), Huan Yuan(袁欢), Zehao Wang(王泽豪), Yang Deng(邓阳),Chengzhi Huang(黄承志), Jiagui Wu(吴加贵), and Junbo Yang(杨俊波). Chin. Phys. B, 2023, 32(6): 064206.
[13] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[14] Transverse manipulation of particles using Bessel beam of tunable size generated by cross-phase modulation
Xiang-Lai Qiao(乔响来), Xue-Mei Cheng(程雪梅), Qian Zhang(张倩), Wen-Ding Zhang(张文定), Zhao-Yu Ren(任兆玉), and Jin-Tao Bai(白晋涛). Chin. Phys. B, 2023, 32(4): 048703.
[15] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
No Suggested Reading articles found!