Fusion of fractional vortex pairs and their transition to integer vortex controlled by optical power
Chunzhi Sun(孙春志)1, Xiangwei Chen(陈向炜)1,†, Huizhong Xu2, and Guo Liang(梁果)1,‡
1 Henan International Joint Laboratory of Optical Information Transmission and Application, Shangqiu Normal University, Shangqiu 476000, China; 2 Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132, USA
Abstract The evolution of fractional vortex pairs in free space and nonlocal nonlinear media is studied. In free space, the off-axis fractional vortex pairs of the-same-sign topological charge (TC) will be merged to one integer vortex at the beam center, which is drastically different from the dynamics of integer vortex pairs. In nonlocal nonlinear media, the conversion between the fractional vortex pair and the conventional integer vortex can be readily achieved by only tuning the input optical power. Therefore our approach provides a convenient way to control the number of vortices and thus the number of optical tweezers by adjusting the input optical power. These results may find potential applications in optical manipulation of particles.
(Beam characteristics: profile, intensity, and power; spatial pattern formation)
Fund: Project supported by the International Scientific and Technological Cooperation Projects of Henan Province, China (Grant No. 242102520010), the Natural Science Foundation of Henan Province, China (Grant No. 252300421307), and the Training Program for Young Backbone Teachers of Higher Education Institutions in Henan Province, China (Grant No. 2023GGJS130).
Chunzhi Sun(孙春志), Xiangwei Chen(陈向炜), Huizhong Xu, and Guo Liang(梁果) Fusion of fractional vortex pairs and their transition to integer vortex controlled by optical power 2025 Chin. Phys. B 34 054202
[1] Wang J, Yang, J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S and Tur M 2012 Nat. Photon. 6 488 [2] Padgett M and Bowman R 2011 Nat. Photon. 5 343 [3] Yang Y J, Ren Y X, Chen M Z, Arita Y and Rosales-Guzmán C 2021 Adv. Photon. 3 034001 [4] Tamburini F, Anzolin G, Umbriaco G, Bianchini A and Barbieri C 2006 Phys. Rev. Lett. 97 163903 [5] Qiu X D, Li F S, Zhang W H, Zhu Z H and Chen L X 2018 Optica 5 208 [6] Courtial J, Robertson D A, Dholakia K, Allen L and Padgett M J 1998 Phys. Rev. Lett. 81 4828 [7] Lavery M P J, Speirits F C, Barnett S M and Padgett M J 2013 Science 341 537 [8] Nicolas A, Veissier L, Giner L, Giacobino E, Maxein D and Laurat J 2014 Nat. Photon. 8 234 [9] Ding D S, Zhang W and Zhou Z Y, et al. 2015 Phys. Rev. Lett. 114 50502 [10] Otte E, Rosales-Guzmán C, Ndagano B, Denz C and Forbes A 2018 Light Sci. Appl. 7 18009 [11] Lee J H, Foo G, Johnson E G and Swartzlander G A 2006 Phys. Rev. Lett. 97 53901 [12] Tamburini F, Thidé B, Molina-Terriza G and Anzolin G 2011 Nat. Phys. 7 195 [13] Gianani I, Suprano A, Giordani T, Spagnolo N, Sciarrino F, Gorpas D, Ntziachristos V, Pinker K, Biton N, Kupferman J and Arnon S 2020 Adv. Photon. 2 036003 [14] Shen Y J, Wang X J, Xie Z W, Min C J, Fu X, Liu Q, Gong M L and Yuan X C 2019 Light: Sci. Appl. 8 90 [15] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185 [16] Garcés-Chávez V, McGloin D, Padgett M J, Dultz W, Schmitzer H and Dholakia K 2003 Phys Rev. Lett. 91 093602 [17] López-Mariscal C, Gutiérrez-Vega J C, Milne G and Dholakia K 2006 Opt. Express 14 4182 [18] Basistiy I, Bazhenov V, Soskin M S and Vasnetsov M V 1993 Opt. Commun. 103 422 [19] Indebetouw G 1993 J. Mod. Opt. 40 73 [20] Yao A M and Padgett M J 2011 Adv. Opt. Photon. 3 161 [21] Beijersbergen M W, Coerwinkel R P C, Kristensen M and Woerdman J P 1994 Opt. Commun. 112 321 [22] Basistiy I V, Soskin M S and Vasnetsov M V 1995 Opt. Commun. 119 604 [23] Vasnetsov M, Basistiy I and Soskin M 1998 Proc. SPIE 3487 29 [24] Zhang H, Zeng J, Lu X Y, Wang Z Y, Zhao C L and Cai Y J 2022 Nanophotonics 11 241 [25] Berry M V 2004 J. Opt. A: Pure Appl. Opt. 6 259 [26] Tao S H and Yuan X C 2004 J. Opt. Soc. Am. A 21 1192 [27] Alperin S N and Siemens M E 2017 Phys. Rev. Lett. 119 203902 [28] Yang Z S, Zhang X, Bai C L and Wang M H 2018 J. Opt. Soc. Am. A 35 452 [29] Hu J T, Tai Y P, Zhu L H, Long Z X, Tang M M, Li H H, Li X Z and Cai Y J 2020 Appl. Phys. Lett. 116 201107 [30] Zhu G X, Bai Z Y, Chen J Y, Huang C R, Wu L P, Fu C L and Wang Y P 2021 Opt. Express 29 28452 [31] Liu H Y, Wang Y, Wang J, Liu K and Wang H Q 2021 IEEE Antennas Wirel. Propag. Lett. 20 948 [32] Oemrawsingh S S R, Ma X, Voigt D, Aiello A, Eliel E R, Hooft GW’t and Woerdman J P 2005 Phys. Rev. Lett. 95 240501 [33] Haus H A 1984 Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, NJ) [34] Pan X J, Zhang C F, Deng C J, Li Z L and Wang Q 2021 Res. Phys. 27 104511 [35] Snyder A W and Mitchell D J 1997 Science 276 1538 [36] Zhong W P and Belić M R 2010 Phys. Rev. E 81 056604 [37] Lu D Q, Hu W, Zheng Y J, Liang Y B, Cao L G, Lan S and Guo Q 2008 Phys. Rev. A 78 043815 [38] Liang G, Chen X W and Xu H Z 2024 Opt. Lett. 49 4871
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.