Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 054201    DOI: 10.1088/1674-1056/adb734
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Impact of free electron laser coherence on imaging quality

Shuang Wei(魏爽)1, Shuang Gong(龚爽)2,†, Yang Bu(步扬)3,‡, and Zi-Jian Song(宋子健)1
1 School of Microelectronics, Shanghai University, Shanghai 200444, China;
2 Zhangjiang Laboratory, Shanghai 201210, China;
3 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract  The high temporal and spatial coherence of free electron lasers (FELs) reduces the uniformity of the illumination field, leading to scattering effects that blur the edges of patterns, resulting in diminished accuracy and clarity. Traditional imaging models regard the light source as fully incoherent, making it difficult to assess the impact of partially coherent light fields on imaging. If FELs are used in imaging systems, their coherence must be considered. To address this issue, this study explores the relationship between coherence, imaging quality and speckle contrast through a simulation method based on random phases. The method divides the light beam into temporal and spatial coherence cells, analyzes their interactions, and simulates imaging results under different coherence conditions. Additionally, speckle patterns for various illumination modes are calculated to evaluate their effects on speckle contrast and illumination uniformity. The results indicate that under different illumination modes, illumination uniformity decreases as coherence increases, while speckle contrast increases with higher coherence. In terms of imaging quality, higher coherence leads to an increase in both line edge roughness (LER) and line width roughness (LWR), thereby reducing the imaging quality. Additionally, the narrower the line width, the greater the impact of coherence on the imaging quality, resulting in poorer imaging performance.
Keywords:  free electron laser      coherence      imaging      speckle contrast      field uniformity  
Received:  01 December 2024      Revised:  07 February 2025      Accepted manuscript online:  18 February 2025
PACS:  42.25.Kb (Coherence)  
  42.30.-d (Imaging and optical processing)  
  42.55.-f (Lasers)  
  41.60.Cr (Free-electron lasers)  
Corresponding Authors:  Shuang Gong, Yang Bu     E-mail:  gongshuang@zjlab.ac.cn;buyang@siom.ac.cn

Cite this article: 

Shuang Wei(魏爽), Shuang Gong(龚爽), Yang Bu(步扬), and Zi-Jian Song(宋子健) Impact of free electron laser coherence on imaging quality 2025 Chin. Phys. B 34 054201

[1] Kwan T, Dawson J M and Lin A T 1977 The Free Electron Laser (Springer) pp. 486-506
[2] Kim K J, Huang Z and Lindberg R 2017 Synchrotron Radiation and Free-Electron Lasers (Cambridge: Cambridge University Press) pp. 23-25
[3] Madey J M 1971 J. Appl. Phys. 42 1906
[4] Cardman L S, Harwood L and Jefferson T 2008 2007 IEEE Particle Accelerator Conf. (PAC), June 22-26, 2007, Albuquerque, United States of America, p. 58
[5] Benson S V, Beard K, Behre C, Biallas G H, Boyce J, Douglas D, Dylla F 2004 High power lasing in the IR Upgrade FEL at Jefferson Lab Thomas Jefferson National Accelerator Facility (TJNAF) (VA: USA)
[6] Kulipanov G N, Bagryanskaya E G, Chesnokov E N, Choporova Y Y, Gerasimov V V, Getmanov Y V and Vinokurov N A 2015 IEEE Trans. on Terahertz Science and Technology 5 798
[7] Thompson N R, Clarke J A, Craig T, Dunning D J, Kolosov O V, Moss A and Weightman P 2015 Proceedings of the 37th Int. Free Electron Laser Conf., 2015, Daejeon, Korea, p. 379
[8] Ben-Zvi I, Derbenev Y, Litvinenko V N and Merminga L 2006 Nuclear Instruments and Methods in Physics Research Section A 557 28
[9] Wang G, Chao Y C, Liu C, Zhao K, Lu X, Zhuang J and Chen J 2007 IEEE Particle Accelerator Conf. (PAC), June 25-29, 2007, Albuquerque, United States of America, p. 1191
[10] Huang S L, Liu K X, Quan S W, Lin L, Zhu F and Chen J E 2011 ii Preface 2007 2005
[11] Chen S, Huang S L, Li Y M, Feng L W, Zhu F, Quan S W and Chen J E 2013 Chin. Phys. C 37 087001
[12] Socol Y, Kulipanov G N, Matveenko A N, Shevchenko O A and Vinokurov N A 2011 Phys. Rev. Spec. Top. Accel. Beams 14 040702
[13] Socol Y, Kulipanov G N, Shevchenko O A, Vinokurov N A and Matveenko A N 2010 13.5 nm Proc. FEL 28 250
[14] Goldstein M, Lee S H, Shroff Y A, Silverman P J, Williams D, Park H and Pantell R H 2005 Proc. 2005 FEL Conf., August 21-26, Stanford, California, United States of America, p. 422
[15] Chen M, Chen L, Zeng A, Zhu J, Yang B and Huang H 2015 Applied Optics 54 6820
[16] Voelkel R 2014 Optical Microlithography XXVII, March, 31, 2014, San Jose, California, United States of America, p. 530
[17] Chang C, Naulleau P, Anderson E and Attwood D 2000 Opt. Commun. 182 25
[18] Anderson C N, Miyakawa R H and Naulleau P P 2011 Extreme Ultraviolet (EUV) Lithography II, April, 8, 2011, San Jose, California, United States of America, p. 986
[19] Naulleau P P, Anderson C N, Dean K, Denham P, Goldberg K A, Hoef B and Wallow T 2007 Emerging Lithographic Technologies XI March, 15, 2007, San Jose, California, United States of America, p. 265
[20] Goodman J W 2005 Introduction to Fourier Optics (Greenwood Village: Roberts and Company Publishers) p. 56
[21] Gbur G and Visser T D 2022 Progress in Optics 67 275
[22] Young T 1802 Phil. Trans. Roy. Soc. Lond. 92 387
[23] Kim Y, Seo H and Park J 2013 Journal of Gifted/Talented Education 23 817
[24] Wolf E 1986 JOSA A 3 76
[25] Mandel L 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press) p. 59
[26] Zernike F 1938 Physica 5 785
[27] Mandel L and Wolf E 1976 JOSA 66 529
[28] Goodman J W 2007 Speckle Phenomena in Optics: Theory and Applications (Greenwood Village: Roberts and Company Publishers) pp. 89-113
[29] Kim S K 2021 Micromachines 12 1493
[30] Stulen R H and Sweeney D W 1999 IEEE J. Quantum Electron. 35 694
[31] Murakami K, Oshino T, Kondo H, Chiba H, Komatsuda H, Nomura K and Iwata H 2008 Emerging Lithographic Technologies XII, March, 20, 2008, San Jose, California, United States of America, p. 222
[32] Antoni M, Singer W, Schultz J, Wangler J, Escudero-Sanz I and Kruizinga B 2000 Soft X-Ray and EUV Imaging Systems, November, 8, 2000 San Jose, California, United States of America, p. 25-34
[33] Constantoudis V, Papavieros G, Karakolis P, Khiat A, Prodromakis T and Dimitrakis P 2019 Materials 12 3972
[34] Brunner T A, Chen X, Gabor A, Higgins C, Sun L and Mack C A 2017 Extreme Ultraviolet (EUV) Lithography VIII, March, 24, 2017, San Jose, California, United States of America, p. 48
[35] Kim S K 2021 Micromachines 12 1493
[1] Investigating maximal steered coherence under the common impacts of reservoir and noise
Ling-Ling Xing(邢玲玲), Huan Yang(杨欢), and Gang Zhang(张刚). Chin. Phys. B, 2025, 34(5): 050304.
[2] Ultracold atomic absorption imaging system in high magnetic fields
Yuying Chen(陈玉莹), Zhengxi Zhang(张正熙), Hongmian Shui(税鸿冕), Yun Liang(梁芸), Fansu Wei(魏凡粟), and Xiaoji Zhou(周小计). Chin. Phys. B, 2025, 34(5): 053303.
[3] Multi-parameter ultrasound imaging for musculoskeletal tissues based on a physics informed generative adversarial network
Pengxin Wang(王鹏鑫), Heyu Ma(马贺雨), Tianyu Liu(刘天宇), Chengcheng Liu(刘成成), Dan Li(李旦), and Dean Ta(他得安). Chin. Phys. B, 2025, 34(4): 044301.
[4] Nonclassicality of photons in mean-field anisotropic quantum light-matter interacting lattices: Two-photon correlation function and quadrature squeezing
Xu-Min Chen(陈许敏), Pei-Yao Chen(陈佩瑶), and Chen Wang(王晨). Chin. Phys. B, 2025, 34(4): 044201.
[5] Signal estimation bias in x-ray dark-field imaging using dual phase grating interferometer
Zhi-Li Wang(王志立), Zun Zhang(张尊), Heng Chen(陈恒), and Xin Ge(葛昕). Chin. Phys. B, 2025, 34(3): 038701.
[6] Lamb wave TDTE super-resolution imaging assisted by deep learning
Liu-Jia Sun(孙刘家), Qing-Bang Han(韩庆邦), and Qi-Lin Jin(靳琪琳). Chin. Phys. B, 2025, 34(1): 014301.
[7] A large language model-powered literature review for high-angle annular dark field imaging
Wenhao Yuan(袁文浩), Cheng Peng(彭程), and Qian He(何迁). Chin. Phys. B, 2024, 33(9): 098703.
[8] High-quality ghost imaging based on undersampled natural-order Hadamard source
Kang Liu(刘炕), Cheng Zhou(周成), Jipeng Huang(黄继鹏), Hongwu Qin(秦宏伍), Xuan Liu(刘轩), Xinwei Li(李鑫伟), and Lijun Song(宋立军). Chin. Phys. B, 2024, 33(9): 094204.
[9] Cryogenic transmission electron microscopy on beam-sensitive materials and quantum science
Gang Wang(王刚) and Jun-Hao Lin(林君浩). Chin. Phys. B, 2024, 33(8): 086801.
[10] Quantum block coherence with respect to projective measurements
Pu Wang(王璞), Zhong-Yan Li(李忠艳), and Hui-Xian Meng(孟会贤). Chin. Phys. B, 2024, 33(8): 080308.
[11] Performance optimization of the neutron-sensitive image intensifier used in neutron imaging
Jinhao Tan(谭金昊), Yushou Song(宋玉收), Jianrong Zhou(周健荣), Wenqin Yang(杨文钦), Xingfen Jiang(蒋兴奋), Jie Liu(刘杰), Chaoyue Zhang(张超月), Xiaojuan Zhou(周晓娟), Yuanguang Xia(夏远光), Shulin Liu(刘术林), Baojun Yan(闫保军), Hui Liu(刘辉), Songlin Wang(王松林), Yubin Zhao(赵豫斌), Jian Zhuang(庄建), Zhijia Sun(孙志嘉), and Yuanbo Chen(陈元柏). Chin. Phys. B, 2024, 33(8): 086102.
[12] Unveiling the in-plane anisotropic dielectric waveguide modes in α-MoO3 flakes
Ying Liao(廖莹) and Jianing Chen(陈佳宁). Chin. Phys. B, 2024, 33(7): 078401.
[13] High-visibility ghost imaging with phase-controlled discrete classical light sources
Xueying Wu(仵雪滢), Yue Zhao(赵岳), and Liming Li(李利明). Chin. Phys. B, 2024, 33(7): 074202.
[14] Quantum discord and its dynamics for multipartite systems
Jiaxin Luo(罗嘉欣) and Qiong Guo(郭琼). Chin. Phys. B, 2024, 33(6): 060303.
[15] Enhancing quantum temporal steering via frequency modulation
Mengkai Wu(吴孟凯) and Weiwen Cheng(程维文). Chin. Phys. B, 2024, 33(5): 050306.
No Suggested Reading articles found!