Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 047303    DOI: 10.1088/1674-1056/adb389
Special Issue: SPECIAL TOPIC — Recent progress on kagome metals and superconductors
SPECIAL TOPIC — Recent progress on kagome metals and superconductors Prev   Next  

Scanning tunneling microscopy study on symmetry breaking of charge density wave in FeGe

Jiakang Zhang(张嘉康)1,†, Ziyuan Chen(陈子元)1,†, Xueliang Wu(吴学良)2, Mingzhe Li(李明哲)1, Yuanji Li(李元骥)1, Ruotong Yin(尹若彤)1, Jiashuo Gong(巩佳硕)1, Shiyuan Wang(王适源)1, Aifeng Wang(王爱峰)2, Dong-Lai Feng(封东来)1,3,4, and Ya-Jun Yan(闫亚军)1,4,‡
1 School of Emerging Technology and Department of Physics, University of Science and Technology of China, Hefei 230026, China;
2 Low temperature Physics Laboratory, College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China;
3 National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei 230026, China;
4 Hefei National Laboratory, University of Science and Technology of China, Hefei 230026, China
Abstract  The complex symmetry breaking states in AV3Sb5 family have attracted extreme research attention, but controversy still exists, especially in the question of time reversal symmetry breaking of the charge density wave (CDW). Most recently, a chiral CDW has been suggested in kagome magnet FeGe, but the related study is very rare. Here, we use a scanning tunneling microscope to study the symmetry breaking behavior of both the short- and long-range CDWs in FeGe. Different from previous studies, our study reveals an isotropic long-range CDW without obvious symmetry breaking, while local rotational symmetry breaking appears in the short-range CDW, which may be related to the existence of strong structural disorders. Moreover, the charge distribution of the short-range CDW is inert to the applied external magnetic fields and the detailed spin arrangements of FeGe, inconsistent with the expectation of a chiral CDW associated with chiral flux. Our results rule out the existence of spontaneous chiral and rotational symmetry breaking in the CDW state of FeGe, putting strong constraints on the further understanding of CDW mechanism.
Keywords:  symmetry breaking      kagome magnet      charge density wave  
Received:  14 October 2024      Revised:  16 January 2025      Accepted manuscript online:  07 February 2025
PACS:  73.22.Gk (Broken symmetry phases)  
  87.64.Dz (Scanning tunneling and atomic force microscopy)  
  71.45.Lr (Charge-density-wave systems)  
  75.50.Ee (Antiferromagnetics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12374140, 12494593, 11790312, 12004056, 11774060, and 92065201), the National Key R&D Program of China (Grant No. 2023YFA1406304), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302803), the Fundamental Research Funds for the Central Universities of China (Grant Nos. 2022CDJXY-002 and WK9990000103), and the New Cornerstone Science Foundation.
Corresponding Authors:  Ya-Jun Yan     E-mail:  yanyj87@ustc.edu.cn

Cite this article: 

Jiakang Zhang(张嘉康), Ziyuan Chen(陈子元), Xueliang Wu(吴学良), Mingzhe Li(李明哲), Yuanji Li(李元骥), Ruotong Yin(尹若彤), Jiashuo Gong(巩佳硕), Shiyuan Wang(王适源), Aifeng Wang(王爱峰), Dong-Lai Feng(封东来), and Ya-Jun Yan(闫亚军) Scanning tunneling microscopy study on symmetry breaking of charge density wave in FeGe 2025 Chin. Phys. B 34 047303

[1] Binder K and Young A P 1986 Rev. Mod. Phys. 58 801
[2] Fiebig M 2005 J. Phys. D: Appl. Phys. 38 R123
[3] Phillips P 2012 Advanced Solid State Physics (Cambridge: Cambridge University Press) p. 34
[4] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 aac9439
[5] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175
[6] Fernandes R M, Chubukov A V and Schmalian J 2014 Nat. Phys. 10 97
[7] Keimer B, Kivelson S A, Norman M R, Uchida S and Zaanen J 2015 Nature 518 179
[8] Si Q, Yu R and Abrahams E 2016 Nat. Rev. Mater. 1 16017
[9] Matsuyama K and Greensite J 2019 Phys. Rev. B 100 184513
[10] Wise W D, Boyer M C, Chatterjee K, Kondo T, Takeuchi T, Ikuta H, Wang Y and Hudson E W 2008 Nat. Phys. 4 696
[11] Comin R, Sutarto R, He F, Da Silva Neto E H, Chauviere L, Fraño A, Liang R, Hardy W N, Bonn D A, Yoshida Y, Eisaki H, Achkar A J, Hawthorn D G, Keimer B, Sawatzky G A and Damascelli A 2015 Nat. Mater. 14 796
[12] Miao H, Fumagalli R, Rossi M, Lorenzana J, Seibold G, Yakhou-Harris F, Kummer K, Brookes N B, Gu G D, Braicovich L, Ghiringhelli G and Dean M P M 2019 Phys. Rev. X 9 031042
[13] Wang N, Gu Y, McGuire M A, Yan J, Shi L, Cui Q, Chen K, Wang Y, Zhang H, Yang H, Dong X, Jiang K, Hu J, Wang B, Sun J and Cheng J 2022 Chin. Phys. B 31 017106
[14] Chen Z, Li D, Lu Z, Liu Y, Zhang J, Li Y, Yin R, Li M, Zhang T, Dong X, Yan Y J and Feng D L 2023 Nat. Commun. 14 2023
[15] Xue C L, Yuan Q Q, Xu Y J, Li Q Y, Dou L G, Jia Z Y and Li S C 2023 Phys. Rev. B 107 134516
[16] Rice W D, Ambwani P, Bombeck M, Thompson J D, Haugstad G, Leighton C and Crooker S A 2014 Nat. Mater. 13 481
[17] Santander-Syro A F, Fortuna F, Bareille C, Rödel T C, Landolt G, Plumb N C, Dil J H and Radović M 2014 Nat. Mater. 13 1085
[18] Soumyanarayanan A, Yee M M, He Y, Van Wezel J, Rahn D J, Rossnagel K, Hudson EW, Norman M R and Hoffman J E 2013 Proc. Natl. Acad. Sci. USA 110 1623
[19] Liu Y, Wei T, He G, Zhang Y, Wang Z and Wang J 2023 Nature 618 934
[20] Ortiz B R, Gomes L C, Morey J R,Winiarski M, Bordelon M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M and Toberer E S 2019 Phys. Rev. Mater. 3 094407
[21] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J and Wilson S D 2020 Phys. Rev. Lett. 125 247002
[22] Zhao H, Li H, Ortiz B R, Teicher SML, Park T, Ye M,Wang Z, Balents L, Wilson S D and Zeljkovic I 2021 Nature 599 216
[23] Chen H, Yang H, Hu B, Zhao Z, Yuan J, Xing Y, Qian G, Huang Z, Li G, Ye Y, Ma S, Ni S, Zhang H, Yin Q, Gong C, Tu Z, Lei H, Tan H, Zhou S, Shen C, Dong X, Yan B, Wang Z and Gao H J 2021 Nature 599 222
[24] Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R and Wilson S D 2021 Phys. Rev. Mater. 5 034801
[25] Neupert T, Denner M M, Yin J X, Thomale R and Hasan M Z 2022 Nat. Phys. 18 137
[26] Meng Y X, Xue C L, Dou L G, Zhao W M, Wang Q W, Xu Y J, Liu X, Xia W, Guo Y and Li S C 2023 Chin. Phys. B 32 096801
[27] Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, Xu G, Guguchia Z, He J, Hossain M S, Liu X, Ruff J, Kautzsch L, Zhang S S, Chang G, Belopolski I, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Wang Z, Thomale R, Neupert T, Wilson S D and Hasan M Z 2021 Nat. Mater. 20 1353
[28] Liang Z, Hou X, Zhang F, Ma W, Wu P, Zhang Z, Yu F, Ying J J, Jiang K, Shan L, Wang Z and Chen X H 2021 Phys. Rev. X 11 031026
[29] Luo H, Gao Q, Liu H, Gu Y, Wu D, Yi C, Jia J, Wu S, Luo X, Xu Y, Zhao L,Wang Q, Mao H, Liu G, Zhu Z, Shi Y, Jiang K, Hu J, Xu Z and Zhou X J 2022 Nat. Commun. 13 273
[30] Xiang Y, Li Q, Li Y, Xie W, Yang H, Wang Z, Yao Y and Wen H H 2021 Nat. Commun. 12 6727
[31] Mielke C, Das D, Yin J X, Liu H, Gupta R, Jiang Y X, Medarde M,Wu X, Lei H C, Chang J, Dai P, Si Q, Miao H, Thomale R, Neupert T, Shi Y, Khasanov R, Hasan M Z, Luetkens H and Guguchia Z 2022 Nature 602 245
[32] Yu L, Wang C, Zhang Y, Sander M, Ni S, Lu Z, Ma S, Wang Z, Zhao Z, Chen H, Jiang K, Zhang Y, Yang H, Zhou F, Dong X, Johnson S L, Graf M J, Hu J, Gao H J and Zhao Z 2021 arXiv:2107.10714
[33] Nie L, Sun K, Ma W, Song D, Zheng L, Liang Z, Wu P, Yu F, Li J, Shan M, Zhao D, Li S, Kang B, Wu Z, Zhou Y, Liu K, Xiang Z, Ying J, Wang Z, Wu T and Chen X 2022 Nature 604 59
[34] Ratcliff N, Hallett L, Ortiz B R,Wilson S D and Harter J W 2021 Phys. Rev. Mater. 5 L111801
[35] Tan H, Liu Y, Wang Z and Yan B 2021 Phys. Rev. Lett. 127 046401
[36] Hu Y, Wu X, Ortiz B R, Han X, Plumb N C, Wilson S D, Schnyder A P and Shi M 2022 Phys. Rev. B 106 L241106
[37] Broyles C, Graf D, Yang H, Dong X, Gao H and Ran S 2022 Phys. Rev. Lett. 129 157001
[38] Frassineti J, Bonfà P, Allodi G, Garcia E, Cong R, Ortiz B R, Wilson S D, De Renzi R, Mitrović V F and Sanna S 2023 Phys. Rev. Res. 5 L012017
[39] Kang M, Fang S, Yoo J, Ortiz B R, Oey Y M, Choi J, Ryu S H, Kim J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Checkelsky J G, Wilson S D, Park J H and Comin R 2022 Nat. Mater. 22 186
[40] Wang Y, Wu T, Li Z, Jiang K and Hu J 2023 Phys. Rev. B 107 184106
[41] Wu P, Tu Y,Wang Z, Yu S, Li H, MaW, Liang Z, Zhang Y, Zhang X, Li Z, Yang Y, Qiao Z, Ying J, Wu T, Shan L, Xiang Z, Wang Z and Chen X 2023 Nat. Phys. 19 1143
[42] Feng X, Jiang K, Wang Z and Hu J 2021 Science Bulletin 66 1384
[43] Denner M M, Thomale R and Neupert T 2021 Phys. Rev. Lett. 127 217601
[44] Ma H Y, Yin J X, Zahid Hasan M and Liu J 2024 Chin. Phys. Lett. 41 047103
[45] Li H, Zhao H, Ortiz B R, Park T, Ye M, Balents L, Wang Z, Wilson S D and Zeljkovic I 2022 Nat. Phys. 18 265
[46] Ishioka J, Liu Y H, Shimatake K, Kurosawa T, Ichimura K, Toda Y, Oda M and Tanda S 2010 Phys. Rev. Lett. 105 176401
[47] Shumiya N, Hossain Md S, Yin J X, Jiang Y X, Ortiz B R, Liu H, Shi Y, Yin Q, Lei H, Zhang S S, Chang G, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Guguchia Z, Wilson S D and Hasan M Z 2021 Phys. Rev. B 104 035131
[48] Wang Z, Jiang Y X, Yin J X, Li Y, Wang G Y, Huang H L, Shao S, Liu J, Zhu P, Shumiya N, Hossain M S, Liu H, Shi Y, Duan J, Li X, Chang G, Dai P, Ye Z, Xu G, Wang Y, Zheng H, Jia J, Hasan M Z and Yao Y 2021 Phys. Rev. B 104 075148
[49] Guo C, Wagner G, Putzke C, Chen D, Wang K, Zhang L, Gutierrez-Amigo M, Errea I, Vergniory M G, Felser C, Fischer M H, Neupert T and Moll P J W 2024 Nat. Phys. 20 579
[50] Xing Y, Bae S, Ritz E, Yang F, Birol T, Capa Salinas A N, Ortiz B R, Wilson S D, Wang Z, Fernandes R M and Madhavan V 2024 Nature 631 60
[51] Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J and Chen X H 2021 Phys. Rev. B 104 L041103
[52] Kenney E M, Ortiz B R, Wang C, Wilson S D and Graf M J 2021 J. Phys.: Condens. Matter 33 235801
[53] Khasanov R, Das D, Gupta R, Mielke C, Elender M, Yin Q, Tu Z, Gong C, Lei H, Ritz E T, Fernandes R M, Birol T, Guguchia Z and Luetkens H 2022 Phys. Rev. Res. 4 023244
[54] Xu Y, Ni Z, Liu Y, Ortiz B R, Deng Q, Wilson S D, Yan B, Balents L and Wu L 2022 Nat. Phys. 18 1470
[55] Wu Q, Wang Z X, Liu Q M, Li R S, Xu S X, Yin Q W, Gong C S, Tu Z J, Lei H C, Dong T and Wang N L 2022 Phys. Rev. B 106 205109
[56] Li H,Wan S, Li H, Li Q, Gu Q, Yang H, Li Y,Wang Z, Yao Y andWen H H 2022 Phys. Rev. B 105 045102
[57] Saykin D R, Farhang C, Kountz E D, Chen D, Ortiz B R, Shekhar C, Felser C, Wilson S D, Thomale R, Xia J and Kapitulnik A 2023 Phys. Rev. Lett. 131 016901
[58] Hu Y, Yamane S, Mattoni G, Yada K, Obata K, Li Y, Yao Y, Wang Z, Wang J, Farhang C, Xia J, Maeno Y and Yonezawa S 2023 arXiv:2208.08036
[59] Teng X, Chen L, Ye F, Rosenberg E, Liu Z, Yin J X, Jiang Y X, Oh J S, HasanMZ, Neubauer K J, Gao B, Xie Y, Hashimoto M, Lu D, Jozwiak C, Bostwick A, Rotenberg E, Birgeneau R J, Chu J H, Yi M and Dai P A 2022 Nature 609 490
[60] Yin J X, Jiang Y X, Teng X, Hossain Md S, Mardanya S, Chang T R, Ye Z, Xu G, Denner M M, Neupert T, Lienhard B, Deng H B, Setty C, Si Q, Chang G, Guguchia Z, Gao B, Shumiya N, Zhang Q, Cochran T A, Multer D, Yi M, Dai P and Hasan M Z 2022 Phys. Rev. Lett. 129 166401
[61] Teng X, Oh J S, Tan H, Chen L, Huang J, Gao B, Yin J X, Chu J H, Hashimoto M, Lu D, Jozwiak C, Bostwick A, Rotenberg E, Granroth G E, Yan B, Birgeneau R J, Dai P and Yi M 2023 Nat. Phys. 19 814
[62] Miao H, Zhang T T, Li H X, Fabbris G, Said A H, Tartaglia R, Yilmaz T, Vescovo E, Yin J X, Murakami S, Feng X L, Jiang K,Wu X L,Wang A F, Okamoto S, Wang Y L and Lee H N 2023 Nat. Commun. 14 6183
[63] Shao S, Yin J X, Belopolski I, You J Y, Hou T, Chen H, Jiang Y, Hossain M S, Yahyavi M, Hsu C H, Feng Y P, Bansil A, Hasan M Z and Chang G 2023 ACS Nano 17 10164
[64] Chen Z, Wu X, Zhou S, Zhang J, Yin R, Li Y, Li M, Gong J, He M, Chai Y, Zhou X, Wang Y, Wang A, Yan Y J and Feng D L 2024 Nat. Commun. 15 6262
[65] Shi C, Liu Y, Maity B B, Wang Q, Kotla S R, Ramakrishnan S, Eisele C, Agarwal H, Noohinejad L, Tao Q, Kang B, Lou Z, Yang X, Qi Y, Lin X, Xu Z A, Thamizhavel A, Cao G H, Smaalen S van, Cao S and Bao J K 2024 Sci. China Phys. Mech. Astron. 67 117012
[66] Wu X, Mi X, Zhang L, Wang C W, Maraytta N, Zhou X, He M, Merz M, Chai Y and Wang A 2024 Phys. Rev. Lett. 132 256501
[67] Chen Z, Wu X, Yin R, Zhang J, Wang S, Li Y, Li M, Wang A, Wang Y, Yan Y J and Feng D L 2024 Phys. Rev. B 110 245104
[68] Oh J S, Biswas A, Klemm M, Tan H, Hashimoto M, Lu D, Yan B, Dai P, Birgeneau R J and Yi M 2024 arXiv:2404.02231
[69] Bode M 2003 Rep. Prog. Phys. 66 523
[70] Wiesendanger R 2009 Rev. Mod. Phys. 81 1495
[71] Yin J X, Lian B and Hasan M Z 2022 Nature 612 647
[72] Novello A M, Spera M, Scarfato A, Ubaldini A, Giannini E, Bowler D R and Renner Ch 2017 Phys. Rev. Lett. 118 017002
[1] Intensity enhancement of Raman active and forbidden modes induced by naturally occurred hot spot at GaAs edge
Tao Liu(刘涛), Miao-Ling Lin(林妙玲), Da Meng(孟达), Xin Cong(从鑫), Qiang Kan(阚强), Jiang-Bin Wu(吴江滨), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2025, 34(1): 017801.
[2] Two-fold symmetry of the in-plane resistance in kagome superconductor Cs(V1-xTax)3Sb5 with enhanced superconductivity
Zhen Zhao(赵振), Ruwen Wang(王汝文), Yuhang Zhang(张宇航), Ke Zhu(祝轲), Weiqi Yu(余维琪), Yechao Han(韩烨超), Jiali Liu(刘家利), Guojing Hu(胡国静), Hui Guo(郭辉), Xiao Lin(林晓), Xiaoli Dong(董晓莉), Hui Chen(陈辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2024, 33(7): 077406.
[3] Enhanced anomalous Hall effect in kagome magnet YbMn6Sn6 with intermediate-valence ytterbium
Longfei Li(李龙飞), Shengwei Chi(迟晟玮), Wenlong Ma(马文龙), Kaizhen Guo(郭凯臻), Gang Xu(徐刚), and Shuang Jia(贾爽). Chin. Phys. B, 2024, 33(5): 057501.
[4] Visualizing the electronic structure of kagome magnet LuMn6Sn6 by angle-resolved photoemission spectroscopy
Man Li(李满), Qi Wang(王琦), Liqin Zhou(周丽琴), Wenhua Song(宋文华), Huan Ma(马欢), Pengfei Ding(丁鹏飞), Alexander Fedorov, Yaobo Huang(黄耀波), Bernd Büchner, Hechang Lei(雷和畅), Shancai Wang(王善才), and Rui Lou(娄睿). Chin. Phys. B, 2024, 33(11): 117101.
[5] Surface-sensitive electronic structure of kagome superconductor CsV3Sb5
Zhisheng Zhao(赵志生), Jianghao Yao(姚江浩), Rui Xu(徐瑞), Yuzhe Wang(王禹喆), Sen Liao(廖森), Zhengtai Liu(刘正太), Dawei Shen (沈大伟), Shengtao Cui(崔胜涛), Zhe Sun(孙喆), Yilin Wang(王义林), Donglai Feng(封东来), and Juan Jiang(姜娟). Chin. Phys. B, 2024, 33(10): 107403.
[6] Distinct behavior of electronic structure under uniaxial strain in BaFe2As2
Jiajun Li(李佳俊), Giao Ngoc Phan, Xingyu Wang(王兴玉), Fazhi Yang(杨发枝), Quanxin Hu(胡全欣), Ke Jia(贾可), Jin Zhao(赵金), Wenyao Liu(刘文尧), Renjie Zhang(张任杰), Youguo Shi(石友国), Shiliang Li(李世亮), Tian Qian(钱天), and Hong Ding(丁洪). Chin. Phys. B, 2024, 33(1): 017401.
[7] Manipulating charge density wave state in kagome compound RbV3Sb5
Yu-Xin Meng(孟雨欣), Cheng-Long Xue(薛成龙), Li-Guo Dou(窦立国), Wei-Min Zhao(赵伟民), Qi-Wei Wang(汪琪玮), Yong-Jie Xu(徐永杰), Xiangqi Liu(刘祥麒), Wei Xia(夏威), Yanfeng Guo(郭艳峰), and Shao-Chun Li(李绍春). Chin. Phys. B, 2023, 32(9): 096801.
[8] Symmetry phases of asymmetric simple exclusion processes on two lanes with an intersection
Bo Tian(田波), Wan-Qiang Wen(文万强), A-Min Li(李阿敏), and Ping Xia(夏萍). Chin. Phys. B, 2023, 32(7): 070504.
[9] Electronic states of domain walls in commensurate charge density wave ground state and mosaic phase in 1T-TaS2
Yan Li(李彦), Yao Xiao(肖遥), Qi Zheng(郑琦), Xiao Lin(林晓), Li Huang(黄立), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(7): 077101.
[10] Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy
Zilu Wang(王子禄), Haoyu Dong(董皓宇), Weichang Zhou(周伟昌), Zhihai Cheng(程志海), and Shancai Wang(王善才). Chin. Phys. B, 2023, 32(6): 067103.
[11] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[12] Anisotropy of 2H-NbSe2 in the superconducting and charge density wave states
Chi Zhang(张驰), Shan Qiao(乔山), Hong Xiao(肖宏), and Tao Hu(胡涛). Chin. Phys. B, 2023, 32(4): 047201.
[13] Spontaneous isospin polarization and quantum Hall ferromagnetism in a rhombohedral trilayer graphene superlattice
Xiangyan Han(韩香岩), Qianling Liu(刘倩伶), Ruirui Niu(牛锐锐), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Chunrui Han(韩春蕊), Kenji Watanabe, Takashi Taniguchi, Zizhao Gan(甘子钊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(11): 117201.
[14] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[15] Conservation of the particle-hole symmetry in the pseudogap state in optimally-doped Bi2Sr2CuO6+δ superconductor
Hongtao Yan(闫宏涛), Qiang Gao(高强), Chunyao Song(宋春尧), Chaohui Yin(殷超辉), Yiwen Chen(陈逸雯), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), Guodong Liu(刘国东), Lin Zhao(赵林), Zuyan Xu(许祖彦), and X. J. Zhou(周兴江). Chin. Phys. B, 2022, 31(8): 087401.
No Suggested Reading articles found!