Abstract Two-dimensional van der Waals ferromagnet FeGeTe (FGT) holds a great potential for applications in spintronic devices due to its high Curie temperature, easy tunability, and excellent structural stability in air. Theoretical studies have shown that pressure, as an external parameter, significantly affects its ferromagnetic properties. In this study, we have performed comprehensive high-pressure neutron powder diffraction (NPD) experiments on FGT up to 5 GPa to investigate the evolution of its structural and magnetic properties with hydrostatic pressure. The NPD data clearly reveal the robustness of the ferromagnetism in FGT, despite of an apparent suppression by hydrostatic pressure. As the pressure increases from 0 to 5 GPa, the Curie temperature is found to decrease monotonically from 225(5) K to 175(5) K, together with a dramatically suppressed ordered moment of Fe, which is well supported by the first-principles calculations. Although no pressure-driven structural phase transition is observed up to 5 GPa, quantitative analysis on the changes of bond lengths and bond angles indicates a significant modification of the exchange interactions, which accounts for the pressure-induced suppression of the ferromagnetism in FGT.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12074023), the Large Scientific Facility Open Subject of Songshan Lake (Grant No. KFKT2022B05), and the Fundamental Research Funds for the Central Universities in China. Neutron diffraction experiments at the Materials and Life Science Experimental Facility of the J-PARC were performed through the user program (Proposal No. 2023A0185).
Corresponding Authors:
Wentao Jin
E-mail: wtjin@buaa.edu.cn
Cite this article:
Yonglin Wang(王涌霖), Xu-Tao Zeng(曾旭涛), Bo Li(李博), Cheng Su(宿程), Takanori Hattori, Xian-Lei Sheng(胜献雷), and Wentao Jin(金文涛) Robustness of ferromagnetism in van der Waals magnet Fe3GeTe2 to hydrostatic pressure 2025 Chin. Phys. B 34 046203
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [2] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto 2016 Science 353 aac9439 [3] Gibertini M, Koperski M, Morpurgo A F and Novoselov K S 2019 Nat. Nanotechnol. 14 408 [4] Lin Z, Huang Y and Duan X 2019 Nat. Electron. 2.9 378 [5] Yu S,Wu X,Wang Y, Guo X and Tong L 2017 Adv. Mater. 29 1606128 [6] Zhang X, Wang J, Zhu W, Zhang J, Li W, Zhang J and Wang K 2024 Chin. Phys. Lett. 41 067503 [7] Lin Z, Peng Y, Wu B, Wang C, Luo Z and Yang J 2022 Chin. Phys. B 31 087506 [8] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133 [9] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270 [10] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, BaoW,Wang C,Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265 [11] Jin W, Zhang G, Wu H, Yang L, Zhang W and Chang H 2023 ACS Appl. Mater. 15 36519 [12] Qian X, Liu J, Fu L and Li J 2014 Science 346 1344 [13] Tang W, Liu H, Li Z, Pan A and Zeng Y 2021 Adv. Sci. 8 2100847 [14] Zhu W, Xie S, Lin H, Zhang G, Wu H, Hu T, Wang Z, Zhang X, Xu J, Wang Y, Zheng Y, Yan F, Zhang J, Zhao L, Patané A, Zhang J, Chang H and Wang K 2022 Chin. Phys. Lett. 39 128501 [15] Ahn E C 2020 NPJ 2D Mater. Appl. 4 17 [16] Kwon J, Shin Y, Kwon H, Lee J Y, Park H, Watanabe K, Taniguchi T, Kim J, Lee C, Im S and Lee G H 2019 Sci. Rep. 9 10354 [17] Chiang C C, Ostwal V, Wu P, Pang C S, Zhang F, Chen Z and Appenzeller J 2021 Appl. Phys. Rev. 8 021306 [18] Huang B, McGuire M A, May A F, Xiao D, Jarillo-Herrero P and Xu X 2020 Nat. Mater. 19 1276 [19] Zhang L, Tang Y, Khan A R, Hasan M M, Wang P, Yan H, Yildirim T, Torres J F, Neupane G P, Zhang Y, Li Q and Lu Y 2020 Adv. Sci. 7 2002697 [20] May A F, Calder S, Cantoni C, Cao H and McGuire M A 2016 Phys. Rev. B 93 014411 [21] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H and Zhang Y 2018 Nature 563 94 [22] Liu B, Liu S, Yang L, Chen Z, Zhang E, Li Z, Wu J, Ruan X, Xiu F, Liu W, He L, Zhang R and Xu Y 2020 Phys. Rev. Lett. 125 267205 [23] Zhang L, Song L, Dai H, Yuan J H, Wang M, Huang X, Qiao L, Cheng H, Wang X, Ren W, Miao X, Ye Lei, Xue K H and Han J B 2020 Appl. Phys. Lett. 116 042402 [24] Zhu M, You Y, Xu G, Tang J, Gong Y and Xu F 2021 Intermetallics 131 107085 [25] Hu X, Zhao Y, Shen X, Krasheninnikov A V, Chen Z and Sun L 2020 ACS Appl. Mater. 12 26367 [26] Wang Y, Wang C, Liang S J, Ma Z, Xu K, Liu X, Zhang L, Admasu A S, Cheong S W, Wang L, Chen A, Liu Z, Cheng B, Ji W and Miao F 2020 Adv. Mater. 32 2004533 [27] Wang H, Xu R, Liu C,Wang L, Zhang Z, Su H,Wang S, Zhao Y, Liu Z, Yu D, Mei J W, Zou X and Dai J F 2020 J. Phys. Chem. Lett. 11 7313 [28] Dang N T, Kozlenko D P, Lis O N, Kichanov S E, Lukin Y V, Golosova N O, Savenko B N, Duong D L, Phan T L, Tran T A and Phan M H 2023 Adv. Sci. 10 2206842 [29] Xu J M,Wang S Y,WangWJ, Zhou Y H, Chen X L, Yang Z R and Qu Z 2020 Chin. Phys. Lett. 37 076202 [30] Ding S, Liang Z, Yang J, Yun C, Zhang P, Li Z, Xue M, Liu Z, Tian G, Liu F, Wang W, Yang W and Yang J 2021 Phys. Rev. B 103 094429 [31] Wang X, Li Z, Zhang M, Hou T, Zhao J, Li L, Rahman A, Xu Z, Gong J, Chi Z, Dai R, Wang Z, Qiao Z and Zhang Z 2019 Phys. Rev. B 100 014407 [32] O’Hara D J, Brubaker Z E, Stillwell R L, O’Bannon E F, Baker A A, Weber D, Bayu Aji L B, Goldberger J E, Kawakami R K, Zieve R J, Jeffries J R and McCall S K 2020 Phys. Rev. B 102 054405 [33] Cai Q, Zhang Y, Luong D, Tulk C A, Fokwa B and Li C 2023 Adv. Phys. 2 2200089 [34] Hattori T, Sano-Furukawa A, Arima H, Komatsu K, Yamada A, Inamura Y, Nakatani T, Seto Y, Nagai T, Utsumi W, Iitaka T, Kagi H, Katayama Y, Inoue T, Otomo a T, Suzuya K, Kamiyama T, Arai M and Yagi T 2015 Phys. Rev. A 780 55 [35] Komatsu K, Moriyama M, Koizumi T, Nakayama K, Kagi H, Abe J and Harjo S 2013 High Press. Res. 33 208 [36] Strässle T, Klotz S, Kunc K, Pomjakushin V and White J S 2014 Phys. Rev. B 90 014101 [37] Rodríguez-Carvajal J 1993 Phys. Rev. B 192 55 [38] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 78 55 [39] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [40] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [41] Verchenko V Y, Tsirlin A A, Sobolev A V, Presniakov I A and Shevelkov A V 2015 Inorg. Chem. 54 8598 [42] Zhu J X, Janoschek M, Chaves D S, Cezar J C, Durakiewicz T, Ronning F, Sassa Y, Mansson M, Scott B L, Wakeham N, Bauer E D and Thompson J D 2016 Phys. Rev. B 93 144404 [43] Tian C K, Wang C, Ji W, Wang J C, Xia T L, Wang L, Liu J J, Zhang H X and Cheng P 2019 Phys. Rev. B 99 184428 [44] Bao S, Wang W, Shangguan Y, Cai Z, Dong Z Y, Huang Z, Si W, Ma Z, Kajimoto R, Ikeuchi K, Yano S i, Yu S L, Wan X, Li J X and Wen J 2022 Phys. Rev. X 12 011022 [45] Xu Y, Wang Y C, Jin X, Liu H, Liu Y, Song H and Tian F 2024 Commun. Phys. 7 381 [46] Pauli W 1924 Naturwiss 12 741 [47] Anderson P W 1950 Phys. Rev 79 350 [48] Goodenough J B 1955 Phys. Rev 100 564 [49] Kanamori J 1960 J. Appl. Phys 31 S14
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.