Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 046203    DOI: 10.1088/1674-1056/adb26f
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

Robustness of ferromagnetism in van der Waals magnet Fe3GeTe2 to hydrostatic pressure

Yonglin Wang(王涌霖)1, Xu-Tao Zeng(曾旭涛)1, Bo Li(李博)1, Cheng Su(宿程)1, Takanori Hattori2, Xian-Lei Sheng(胜献雷)1, and Wentao Jin(金文涛)1,†
1 School of Physics, Beihang University, Beijing 100191, China;
2 J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
Abstract  Two-dimensional van der Waals ferromagnet Fe3GeTe2 (FGT) holds a great potential for applications in spintronic devices due to its high Curie temperature, easy tunability, and excellent structural stability in air. Theoretical studies have shown that pressure, as an external parameter, significantly affects its ferromagnetic properties. In this study, we have performed comprehensive high-pressure neutron powder diffraction (NPD) experiments on FGT up to 5 GPa to investigate the evolution of its structural and magnetic properties with hydrostatic pressure. The NPD data clearly reveal the robustness of the ferromagnetism in FGT, despite of an apparent suppression by hydrostatic pressure. As the pressure increases from 0 to 5 GPa, the Curie temperature is found to decrease monotonically from 225(5) K to 175(5) K, together with a dramatically suppressed ordered moment of Fe, which is well supported by the first-principles calculations. Although no pressure-driven structural phase transition is observed up to 5 GPa, quantitative analysis on the changes of bond lengths and bond angles indicates a significant modification of the exchange interactions, which accounts for the pressure-induced suppression of the ferromagnetism in FGT.
Keywords:  van der Waals material      ferromagnetism      hydrostatic pressure      neutron diffraction  
Received:  29 December 2024      Revised:  02 February 2025      Accepted manuscript online:  05 February 2025
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  75.50.-y (Studies of specific magnetic materials)  
  61.05.F- (Neutron diffraction and scattering)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12074023), the Large Scientific Facility Open Subject of Songshan Lake (Grant No. KFKT2022B05), and the Fundamental Research Funds for the Central Universities in China. Neutron diffraction experiments at the Materials and Life Science Experimental Facility of the J-PARC were performed through the user program (Proposal No. 2023A0185).
Corresponding Authors:  Wentao Jin     E-mail:  wtjin@buaa.edu.cn

Cite this article: 

Yonglin Wang(王涌霖), Xu-Tao Zeng(曾旭涛), Bo Li(李博), Cheng Su(宿程), Takanori Hattori, Xian-Lei Sheng(胜献雷), and Wentao Jin(金文涛) Robustness of ferromagnetism in van der Waals magnet Fe3GeTe2 to hydrostatic pressure 2025 Chin. Phys. B 34 046203

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto 2016 Science 353 aac9439
[3] Gibertini M, Koperski M, Morpurgo A F and Novoselov K S 2019 Nat. Nanotechnol. 14 408
[4] Lin Z, Huang Y and Duan X 2019 Nat. Electron. 2.9 378
[5] Yu S,Wu X,Wang Y, Guo X and Tong L 2017 Adv. Mater. 29 1606128
[6] Zhang X, Wang J, Zhu W, Zhang J, Li W, Zhang J and Wang K 2024 Chin. Phys. Lett. 41 067503
[7] Lin Z, Peng Y, Wu B, Wang C, Luo Z and Yang J 2022 Chin. Phys. B 31 087506
[8] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
[9] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270
[10] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, BaoW,Wang C,Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[11] Jin W, Zhang G, Wu H, Yang L, Zhang W and Chang H 2023 ACS Appl. Mater. 15 36519
[12] Qian X, Liu J, Fu L and Li J 2014 Science 346 1344
[13] Tang W, Liu H, Li Z, Pan A and Zeng Y 2021 Adv. Sci. 8 2100847
[14] Zhu W, Xie S, Lin H, Zhang G, Wu H, Hu T, Wang Z, Zhang X, Xu J, Wang Y, Zheng Y, Yan F, Zhang J, Zhao L, Patané A, Zhang J, Chang H and Wang K 2022 Chin. Phys. Lett. 39 128501
[15] Ahn E C 2020 NPJ 2D Mater. Appl. 4 17
[16] Kwon J, Shin Y, Kwon H, Lee J Y, Park H, Watanabe K, Taniguchi T, Kim J, Lee C, Im S and Lee G H 2019 Sci. Rep. 9 10354
[17] Chiang C C, Ostwal V, Wu P, Pang C S, Zhang F, Chen Z and Appenzeller J 2021 Appl. Phys. Rev. 8 021306
[18] Huang B, McGuire M A, May A F, Xiao D, Jarillo-Herrero P and Xu X 2020 Nat. Mater. 19 1276
[19] Zhang L, Tang Y, Khan A R, Hasan M M, Wang P, Yan H, Yildirim T, Torres J F, Neupane G P, Zhang Y, Li Q and Lu Y 2020 Adv. Sci. 7 2002697
[20] May A F, Calder S, Cantoni C, Cao H and McGuire M A 2016 Phys. Rev. B 93 014411
[21] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H and Zhang Y 2018 Nature 563 94
[22] Liu B, Liu S, Yang L, Chen Z, Zhang E, Li Z, Wu J, Ruan X, Xiu F, Liu W, He L, Zhang R and Xu Y 2020 Phys. Rev. Lett. 125 267205
[23] Zhang L, Song L, Dai H, Yuan J H, Wang M, Huang X, Qiao L, Cheng H, Wang X, Ren W, Miao X, Ye Lei, Xue K H and Han J B 2020 Appl. Phys. Lett. 116 042402
[24] Zhu M, You Y, Xu G, Tang J, Gong Y and Xu F 2021 Intermetallics 131 107085
[25] Hu X, Zhao Y, Shen X, Krasheninnikov A V, Chen Z and Sun L 2020 ACS Appl. Mater. 12 26367
[26] Wang Y, Wang C, Liang S J, Ma Z, Xu K, Liu X, Zhang L, Admasu A S, Cheong S W, Wang L, Chen A, Liu Z, Cheng B, Ji W and Miao F 2020 Adv. Mater. 32 2004533
[27] Wang H, Xu R, Liu C,Wang L, Zhang Z, Su H,Wang S, Zhao Y, Liu Z, Yu D, Mei J W, Zou X and Dai J F 2020 J. Phys. Chem. Lett. 11 7313
[28] Dang N T, Kozlenko D P, Lis O N, Kichanov S E, Lukin Y V, Golosova N O, Savenko B N, Duong D L, Phan T L, Tran T A and Phan M H 2023 Adv. Sci. 10 2206842
[29] Xu J M,Wang S Y,WangWJ, Zhou Y H, Chen X L, Yang Z R and Qu Z 2020 Chin. Phys. Lett. 37 076202
[30] Ding S, Liang Z, Yang J, Yun C, Zhang P, Li Z, Xue M, Liu Z, Tian G, Liu F, Wang W, Yang W and Yang J 2021 Phys. Rev. B 103 094429
[31] Wang X, Li Z, Zhang M, Hou T, Zhao J, Li L, Rahman A, Xu Z, Gong J, Chi Z, Dai R, Wang Z, Qiao Z and Zhang Z 2019 Phys. Rev. B 100 014407
[32] O’Hara D J, Brubaker Z E, Stillwell R L, O’Bannon E F, Baker A A, Weber D, Bayu Aji L B, Goldberger J E, Kawakami R K, Zieve R J, Jeffries J R and McCall S K 2020 Phys. Rev. B 102 054405
[33] Cai Q, Zhang Y, Luong D, Tulk C A, Fokwa B and Li C 2023 Adv. Phys. 2 2200089
[34] Hattori T, Sano-Furukawa A, Arima H, Komatsu K, Yamada A, Inamura Y, Nakatani T, Seto Y, Nagai T, Utsumi W, Iitaka T, Kagi H, Katayama Y, Inoue T, Otomo a T, Suzuya K, Kamiyama T, Arai M and Yagi T 2015 Phys. Rev. A 780 55
[35] Komatsu K, Moriyama M, Koizumi T, Nakayama K, Kagi H, Abe J and Harjo S 2013 High Press. Res. 33 208
[36] Strässle T, Klotz S, Kunc K, Pomjakushin V and White J S 2014 Phys. Rev. B 90 014101
[37] Rodríguez-Carvajal J 1993 Phys. Rev. B 192 55
[38] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 78 55
[39] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[40] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[41] Verchenko V Y, Tsirlin A A, Sobolev A V, Presniakov I A and Shevelkov A V 2015 Inorg. Chem. 54 8598
[42] Zhu J X, Janoschek M, Chaves D S, Cezar J C, Durakiewicz T, Ronning F, Sassa Y, Mansson M, Scott B L, Wakeham N, Bauer E D and Thompson J D 2016 Phys. Rev. B 93 144404
[43] Tian C K, Wang C, Ji W, Wang J C, Xia T L, Wang L, Liu J J, Zhang H X and Cheng P 2019 Phys. Rev. B 99 184428
[44] Bao S, Wang W, Shangguan Y, Cai Z, Dong Z Y, Huang Z, Si W, Ma Z, Kajimoto R, Ikeuchi K, Yano S i, Yu S L, Wan X, Li J X and Wen J 2022 Phys. Rev. X 12 011022
[45] Xu Y, Wang Y C, Jin X, Liu H, Liu Y, Song H and Tian F 2024 Commun. Phys. 7 381
[46] Pauli W 1924 Naturwiss 12 741
[47] Anderson P W 1950 Phys. Rev 79 350
[48] Goodenough J B 1955 Phys. Rev 100 564
[49] Kanamori J 1960 J. Appl. Phys 31 S14
[1] Higher-order topology in twisted multilayer systems: A review
Chunbo Hua(花春波) and Dong-Hui Xu(许东辉). Chin. Phys. B, 2025, 34(3): 037301.
[2] Simultaneous control of ferromagnetism and ferroelasticity by oxygen octahedral backbone stretching
Genhao Liang(梁根豪), Hui Cao(曹慧), Long Cheng(成龙), Junkun Zha(查君坤), Mingrui Bao(保明睿), Fei Ye(叶飞), Hua Zhou(周华), Aidi Zhao(赵爱迪), and Xiaofang Zhai(翟晓芳). Chin. Phys. B, 2024, 33(9): 097101.
[3] Evolution of anomalous Hall effect in ferromagnetic Weyl semimetal NbxZr1-xCo2Sn
Bo-Wen Chen(陈博文) and Bing Shen(沈冰). Chin. Phys. B, 2024, 33(8): 087501.
[4] Unveiling the in-plane anisotropic dielectric waveguide modes in α-MoO3 flakes
Ying Liao(廖莹) and Jianing Chen(陈佳宁). Chin. Phys. B, 2024, 33(7): 078401.
[5] Semiclassical approach to spin dynamics of a ferromagnetic S=1 chain
Chengchen Li(李承晨), Yi Cui(崔祎), Weiqiang Yu(于伟强), and Rong Yu(俞榕). Chin. Phys. B, 2024, 33(6): 067501.
[6] Coexistence of antiferromagnetism and unconventional superconductivity in a quasi-one-dimensional flat-band system: Creutz lattice
Feng Xu(徐峰) and Lei Zhang(张磊). Chin. Phys. B, 2024, 33(3): 037402.
[7] Angular and planar transport properties of antiferromagnetic V5S8
Xiao-Kai Wu(吴晓凯), Bin Wang(王彬), De-Tong Wu(吴德桐), Bo-Wen Chen(陈博文), Meng-Juan Mi(弭孟娟), Yi-Lin Wang(王以林), and Bing Shen(沈冰). Chin. Phys. B, 2024, 33(2): 027503.
[8] Strain-modulated antiferromagnetic Chern insulator in NiOsCl6 monolayer
Bin Wu(武斌), Na Li(李娜), Xin-Lian Chen(陈新莲), Wei-Xiao Ji(纪维霄), Pei-Ji Wang(王培吉), Shu-Feng Zhang(张树峰), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(12): 127301.
[9] Spin-orbit torque effect in silicon-based sputtered Mn3Sn film
Sha Lu(卢莎), Dequan Meng(孟德全), Adnan Khan, Ziao Wang(王子傲), Shiwei Chen(陈是位), and Shiheng Liang(梁世恒). Chin. Phys. B, 2024, 33(10): 107501.
[10] Controllable high Curie temperature through 5d transition metal atom doping in CrI3
Xuebing Peng(彭雪兵), Mingsu Si(司明苏), and Daqiang Gao(高大强). Chin. Phys. B, 2024, 33(1): 017503.
[11] A spin-based magnetic scanning microscope for in-situ strain tuning of soft matter
Zhe Ding(丁哲), Yumeng Sun(孙豫蒙), Mengqi Wang(王孟祺), Pei Yu(余佩), Ningchong Zheng(郑宁冲), Yipeng Zang(臧一鹏), Pengfei Wang(王鹏飞), Ya Wang(王亚), Yuefeng Nie(聂越峰), Fazhan Shi(石发展), and Jiangfeng Du(杜江峰). Chin. Phys. B, 2023, 32(5): 057504.
[12] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[13] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[14] Spontaneous isospin polarization and quantum Hall ferromagnetism in a rhombohedral trilayer graphene superlattice
Xiangyan Han(韩香岩), Qianling Liu(刘倩伶), Ruirui Niu(牛锐锐), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Chunrui Han(韩春蕊), Kenji Watanabe, Takashi Taniguchi, Zizhao Gan(甘子钊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(11): 117201.
[15] Enhanced ferromagnetism and conductivity of ultrathin freestanding La0.7Sr0.3MnO3 membranes
Siqi Shan(单思齐), Yequan Chen(陈业全), Yongda Chen(陈勇达), Wenzhuo Zhuang(庄文卓), Ruxin Liu(刘汝新), Xu Zhang(张旭), Rong Zhang(张荣), and Xuefeng Wang(王学锋). Chin. Phys. B, 2023, 32(10): 107402.
No Suggested Reading articles found!