CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Strain-manipulated dispersion characteristics of magnonic crystals with Dzyaloshinskii-Moriya interaction and applications on spin-wave devices |
Chuhan Zhou(周楚涵)1, Xiaotian Jiao(焦晓天)2, Jiaxi Xu(徐佳熙)1, Zhaonian Jin(金兆年)1, Lin Chen(陈琳)2, and Zhikuo Tao(陶志阔)2,† |
1 Bell Honors School, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; 2 College of Electronic and Optical Engineering & College of Flexible Electronics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China |
|
|
Abstract Dispersion characteristics of magnonic crystals have attracted considerable attention because of the potential applications for spin-wave devices. In this work, we investigated the strain-manipulated dispersion characteristics of magnonic crystals with Dzyaloshinskii-Moriya interaction (DMI) and discussed the potential applications in spin-wave devices. Here, the ground states and stabilities of the magnonic crystals were investigated. Then, the strain-manipulated dispersion characteristics of the magnonic crystals based on domains and skyrmions were studied. The simulation results indicated that, the applied strain could manipulate the band widths and the positions of the allowed frequency bands. Finally, the realization of magnonic crystal heterojunctions and potential applications in spin-wave devices, such as filters, diodes, and transistors based on strain-manipulated magnonic crystals were proposed. Our research provides a theoretical foundation for designing tunable spin-wave devices based on strain-manipulated magnonic crystals with DMI.
|
Received: 25 July 2024
Revised: 26 November 2024
Accepted manuscript online: 29 November 2024
|
PACS:
|
75.30.Ds
|
(Spin waves)
|
|
75.80.+q
|
(Magnetomechanical effects, magnetostriction)
|
|
85.70.Ay
|
(Magnetic device characterization, design, and modeling)
|
|
12.39.Dc
|
(Skyrmions)
|
|
Corresponding Authors:
Zhikuo Tao
E-mail: zktao@njupt.edu.cn
|
Cite this article:
Chuhan Zhou(周楚涵), Xiaotian Jiao(焦晓天), Jiaxi Xu(徐佳熙), Zhaonian Jin(金兆年), Lin Chen(陈琳), and Zhikuo Tao(陶志阔) Strain-manipulated dispersion characteristics of magnonic crystals with Dzyaloshinskii-Moriya interaction and applications on spin-wave devices 2025 Chin. Phys. B 34 027501
|
[1] Chumak A V, Sergra A A and Hillebrands B 2014 Nat. Commun. 5 4700 [2] Vogt K, Fradin F, Pearson J, Sebastian T, Bader S, Hillebrands B, Hoffmann A and Schultheiss H 2014 Nat. Commun. 5 3727 [3] Lee K S, Han D S and Kim S K 2009 Phys. Rev. Lett. 102 127202 [4] Chumak A V, Vasyuchka V I, Sergra A A and Hillebrands B 2015 Nat. Phys. 11 453 [5] Ma F, Zhou Y, Braun H B and Lew W S 2015 Nano Lett. 15 4029 [6] Wang X G, Guo G H, Li Z X, Wang D W, Nie Y Z and Tang W 2015 Europhys. Lett. 109 37008 [7] Li Z X, Wang X G, Wang D W, Nie Y Z, Tang W and Guo G H 2015 J. Magn. Magn. Mater. 388 10 [8] Mruczkiewicz M, Gruszecki P, Zelent M and Krawczyk M 2016 Phys. Rev. B 93 174429 [9] Wang X G, Nie Y Z, Xia Q L and Guo G H 2020 J. Appl. Phys. 128 063901 [10] Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241 [11] Moriya T 1960 Phys. Rev. Lett. 4 228 [12] Yang X X, Ai X L, Liu X, Li H T, Ma X P, Shim J H and Piao H G 2024 Appl. Phys. Lett. 125 172403 [13] Abdulrazak T, Liu X J,Wang Z Y, Cao Y S and Yan P 2024 Chin. Phys. B 33 107504 [14] Li N, Fan M M, Zeng X Y and Yan M 2024 Symmetry 16 1336 [15] Saini S, Bindal N, Raj R K and Kaushik B K 2024 Nanoscale 16 9004 [16] Bai X, Wang J N, Yang J X, Liu H B, Zhang S F and Liu Q F 2024 J. Magn. Magn. Mater. 15 171231 [17] Ma X P, Ai X L, Yang X X, Cai M X, Shim J H and Piao H G 2023 J. Magn. Magn. Mater. 581 170665 [18] Liu Y, Liu T T, Jin Z, Hou Z P, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Qin M H and Liu J M 2024 Phys. Rev. B 106 064424 [19] Liu A K and Finkelstein A M 2023 Phys. Rev. B 107 012413 [20] Grachev A A, Sheshukova S E and Sadovnikov A V 2024 Appl. Phys. Lett. 124 162406 [21] Medlej I, Wang J L, Hu C Y and Yu K L 2024 J. Magn. Magn. Mater. 591 171726 [22] Yang W G and Schmidt H 2021 Appl. Phys. Rev. 8 021304 [23] Bandyopadhyay S, Atulasimha J and Barman A 2021 Appl. Phys. Rev. 8 041323 [24] Zhu M M, Hu H M, Cui S T, Li Y T, Zhou X P, Qiu Y, Guo R D, Wu G H, Yu G L and Zhou H M 2021 Appl. Phys. Lett. 118 262412 [25] Zhu M M, Li Y T, Hu H M, Cui S T, Qiu Y, Yu G L and Zhou H M 2022 Appl. Phys. Lett. 121 032402 [26] Hu J M, Yang T N and Chen L Q 2020 Acta Mater. 183 145 [27] Rendell-Bhatti F, Lamb R J, Jagt J W, Paterson G W, Swagten H J M and McGrouther D 2020 Nat. Commun. 11 3536 [28] Dong S Z, Wang J, Shi X M, Liang D S, Mehdi Jafri H, Hu C C, Jin K and Huang H B 2023 Scr. Mater. 222 114994 [29] Jin Z N, He X L, Yu C, Fang H N, Chen L and Tao Z K 2024 Chin. Phys. B 33 017501 [30] Beg M, Lang M and Fangohr H 2022 IEEE Trans. Mag. 58 7300205 [31] Fangohr H, Lang M, Holt S J R, Pathak S A, Zulfiqar K and Beg M 2024 AIP Adv. 14 015138 [32] Hu J M, Yang T and Chen L Q 2020 Acta Mater. 183 145 [33] Ota S, Hibino Y, Bang D, Awano H, Kozeki T, Akamine H, Fujii T, Namazu T, Takenobu T, Koyama T and Chiba D 2016 Appl. Phys. Express 9 043004 [34] Biswas A K, Ahmad H, Atulasimha J and Bandyopadhyay S 2017 Nano Lett. 17 3478 [35] Zhu M, Li Y, Hu H, Cui S, Qiu Y, Yu G and Zhou H 2022 Appl. Phys. Lett. 121 032402 [36] Venkat G, Kumar D, Franchin M, Dmytriiev O, Mruczkiewicz M, Fangohr H, Barman A, Krawczyk M and Prabhakar A 2013 IEEE Trans. Magn. 49 524 [37] Schoen M A W, Thonig D, Schneider M L, Silva T J, Nembach H T, Eriksson O, Karis O and Shaw J M 2016 Nat. Phys. 12 839 [38] Barati E, Cinal M, Edwards D M and Umerski A 2014 Phys. Rev. B 90 0014420 [39] https://unitedcrystals.com/LiNbO3Prop.html [40] Yokouchi Y, Sugimoto S, Rana B, Seki S, Ogawa N, Kasai S and Otani Y 2020 Nat. Nanotechnol. 15 361 [41] https://info.piezo.com/hubfs/data-sheet [42] Rosales H Diego and Troncoso E Roberto 2024 Phys. Rev. B 110 134435 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|