Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 027501    DOI: 10.1088/1674-1056/ad9892
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Strain-manipulated dispersion characteristics of magnonic crystals with Dzyaloshinskii-Moriya interaction and applications on spin-wave devices

Chuhan Zhou(周楚涵)1, Xiaotian Jiao(焦晓天)2, Jiaxi Xu(徐佳熙)1, Zhaonian Jin(金兆年)1, Lin Chen(陈琳)2, and Zhikuo Tao(陶志阔)2,†
1 Bell Honors School, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 College of Electronic and Optical Engineering & College of Flexible Electronics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  Dispersion characteristics of magnonic crystals have attracted considerable attention because of the potential applications for spin-wave devices. In this work, we investigated the strain-manipulated dispersion characteristics of magnonic crystals with Dzyaloshinskii-Moriya interaction (DMI) and discussed the potential applications in spin-wave devices. Here, the ground states and stabilities of the magnonic crystals were investigated. Then, the strain-manipulated dispersion characteristics of the magnonic crystals based on domains and skyrmions were studied. The simulation results indicated that, the applied strain could manipulate the band widths and the positions of the allowed frequency bands. Finally, the realization of magnonic crystal heterojunctions and potential applications in spin-wave devices, such as filters, diodes, and transistors based on strain-manipulated magnonic crystals were proposed. Our research provides a theoretical foundation for designing tunable spin-wave devices based on strain-manipulated magnonic crystals with DMI.
Keywords:  magnonic crystal      spin wave      dispersion relation      skyrmion      domain  
Received:  25 July 2024      Revised:  26 November 2024      Accepted manuscript online:  29 November 2024
PACS:  75.30.Ds (Spin waves)  
  75.80.+q (Magnetomechanical effects, magnetostriction)  
  85.70.Ay (Magnetic device characterization, design, and modeling)  
  12.39.Dc (Skyrmions)  
Corresponding Authors:  Zhikuo Tao     E-mail:  zktao@njupt.edu.cn

Cite this article: 

Chuhan Zhou(周楚涵), Xiaotian Jiao(焦晓天), Jiaxi Xu(徐佳熙), Zhaonian Jin(金兆年), Lin Chen(陈琳), and Zhikuo Tao(陶志阔) Strain-manipulated dispersion characteristics of magnonic crystals with Dzyaloshinskii-Moriya interaction and applications on spin-wave devices 2025 Chin. Phys. B 34 027501

[1] Chumak A V, Sergra A A and Hillebrands B 2014 Nat. Commun. 5 4700
[2] Vogt K, Fradin F, Pearson J, Sebastian T, Bader S, Hillebrands B, Hoffmann A and Schultheiss H 2014 Nat. Commun. 5 3727
[3] Lee K S, Han D S and Kim S K 2009 Phys. Rev. Lett. 102 127202
[4] Chumak A V, Vasyuchka V I, Sergra A A and Hillebrands B 2015 Nat. Phys. 11 453
[5] Ma F, Zhou Y, Braun H B and Lew W S 2015 Nano Lett. 15 4029
[6] Wang X G, Guo G H, Li Z X, Wang D W, Nie Y Z and Tang W 2015 Europhys. Lett. 109 37008
[7] Li Z X, Wang X G, Wang D W, Nie Y Z, Tang W and Guo G H 2015 J. Magn. Magn. Mater. 388 10
[8] Mruczkiewicz M, Gruszecki P, Zelent M and Krawczyk M 2016 Phys. Rev. B 93 174429
[9] Wang X G, Nie Y Z, Xia Q L and Guo G H 2020 J. Appl. Phys. 128 063901
[10] Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241
[11] Moriya T 1960 Phys. Rev. Lett. 4 228
[12] Yang X X, Ai X L, Liu X, Li H T, Ma X P, Shim J H and Piao H G 2024 Appl. Phys. Lett. 125 172403
[13] Abdulrazak T, Liu X J,Wang Z Y, Cao Y S and Yan P 2024 Chin. Phys. B 33 107504
[14] Li N, Fan M M, Zeng X Y and Yan M 2024 Symmetry 16 1336
[15] Saini S, Bindal N, Raj R K and Kaushik B K 2024 Nanoscale 16 9004
[16] Bai X, Wang J N, Yang J X, Liu H B, Zhang S F and Liu Q F 2024 J. Magn. Magn. Mater. 15 171231
[17] Ma X P, Ai X L, Yang X X, Cai M X, Shim J H and Piao H G 2023 J. Magn. Magn. Mater. 581 170665
[18] Liu Y, Liu T T, Jin Z, Hou Z P, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Qin M H and Liu J M 2024 Phys. Rev. B 106 064424
[19] Liu A K and Finkelstein A M 2023 Phys. Rev. B 107 012413
[20] Grachev A A, Sheshukova S E and Sadovnikov A V 2024 Appl. Phys. Lett. 124 162406
[21] Medlej I, Wang J L, Hu C Y and Yu K L 2024 J. Magn. Magn. Mater. 591 171726
[22] Yang W G and Schmidt H 2021 Appl. Phys. Rev. 8 021304
[23] Bandyopadhyay S, Atulasimha J and Barman A 2021 Appl. Phys. Rev. 8 041323
[24] Zhu M M, Hu H M, Cui S T, Li Y T, Zhou X P, Qiu Y, Guo R D, Wu G H, Yu G L and Zhou H M 2021 Appl. Phys. Lett. 118 262412
[25] Zhu M M, Li Y T, Hu H M, Cui S T, Qiu Y, Yu G L and Zhou H M 2022 Appl. Phys. Lett. 121 032402
[26] Hu J M, Yang T N and Chen L Q 2020 Acta Mater. 183 145
[27] Rendell-Bhatti F, Lamb R J, Jagt J W, Paterson G W, Swagten H J M and McGrouther D 2020 Nat. Commun. 11 3536
[28] Dong S Z, Wang J, Shi X M, Liang D S, Mehdi Jafri H, Hu C C, Jin K and Huang H B 2023 Scr. Mater. 222 114994
[29] Jin Z N, He X L, Yu C, Fang H N, Chen L and Tao Z K 2024 Chin. Phys. B 33 017501
[30] Beg M, Lang M and Fangohr H 2022 IEEE Trans. Mag. 58 7300205
[31] Fangohr H, Lang M, Holt S J R, Pathak S A, Zulfiqar K and Beg M 2024 AIP Adv. 14 015138
[32] Hu J M, Yang T and Chen L Q 2020 Acta Mater. 183 145
[33] Ota S, Hibino Y, Bang D, Awano H, Kozeki T, Akamine H, Fujii T, Namazu T, Takenobu T, Koyama T and Chiba D 2016 Appl. Phys. Express 9 043004
[34] Biswas A K, Ahmad H, Atulasimha J and Bandyopadhyay S 2017 Nano Lett. 17 3478
[35] Zhu M, Li Y, Hu H, Cui S, Qiu Y, Yu G and Zhou H 2022 Appl. Phys. Lett. 121 032402
[36] Venkat G, Kumar D, Franchin M, Dmytriiev O, Mruczkiewicz M, Fangohr H, Barman A, Krawczyk M and Prabhakar A 2013 IEEE Trans. Magn. 49 524
[37] Schoen M A W, Thonig D, Schneider M L, Silva T J, Nembach H T, Eriksson O, Karis O and Shaw J M 2016 Nat. Phys. 12 839
[38] Barati E, Cinal M, Edwards D M and Umerski A 2014 Phys. Rev. B 90 0014420
[39] https://unitedcrystals.com/LiNbO3Prop.html
[40] Yokouchi Y, Sugimoto S, Rana B, Seki S, Ogawa N, Kasai S and Otani Y 2020 Nat. Nanotechnol. 15 361
[41] https://info.piezo.com/hubfs/data-sheet
[42] Rosales H Diego and Troncoso E Roberto 2024 Phys. Rev. B 110 134435
[1] Intensity enhancement of Raman active and forbidden modes induced by naturally occurred hot spot at GaAs edge
Tao Liu(刘涛), Miao-Ling Lin(林妙玲), Da Meng(孟达), Xin Cong(从鑫), Qiang Kan(阚强), Jiang-Bin Wu(吴江滨), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2025, 34(1): 017801.
[2] Lamb wave TDTE super-resolution imaging assisted by deep learning
Liu-Jia Sun(孙刘家), Qing-Bang Han(韩庆邦), and Qi-Lin Jin(靳琪琳). Chin. Phys. B, 2025, 34(1): 014301.
[3] Simultaneous control of ferromagnetism and ferroelasticity by oxygen octahedral backbone stretching
Genhao Liang(梁根豪), Hui Cao(曹慧), Long Cheng(成龙), Junkun Zha(查君坤), Mingrui Bao(保明睿), Fei Ye(叶飞), Hua Zhou(周华), Aidi Zhao(赵爱迪), and Xiaofang Zhai(翟晓芳). Chin. Phys. B, 2024, 33(9): 097101.
[4] Mapping the antiparallel aligned domain rotation by microwave excitation
Jing Zhang(张景), Yuanzhi Cui(崔远志), Xiaoyu Wang(王晓雨), Chuang Wang(王创), Mengchen Liu(刘梦晨), Jie Xu(徐洁), Kai Li(李凯), Yunhe Zhao(赵芸鹤), Zhenyan Lu(陆振烟), Lining Pan(潘丽宁), Chendong Jin(金晨东), Qingfang Liu(刘青芳), Jianbo Wang(王建波), and Derang Cao(曹德让). Chin. Phys. B, 2024, 33(9): 097506.
[5] Spin wave resonance frequency in bilayer ferromagnetic films with the biquadratic exchange interaction
Xiaojie Zhang(张晓洁), Yuting Wang(王雨汀), Yanqiu Chang(常艳秋), Huan Wang(王焕), Jianhong Rong(荣建红), and Guohong Yun(云国宏). Chin. Phys. B, 2024, 33(9): 097601.
[6] Frequency combs based on magnon-skyrmion interaction in magnetic nanotubes
Tijjani Abdulrazak, Xuejuan Liu(刘雪娟), Zhejunyu Jin(金哲珺雨), Yunshan Cao(曹云姗), and Peng Yan(严鹏). Chin. Phys. B, 2024, 33(8): 087503.
[7] Magnetic domain structures in ultrathin Bi2Te3/CrTe2 heterostructures
Tirui Xia(夏体瑞), Xiaotian Yang(杨笑天), Yifan Zhang(张逸凡), Xinqi Liu(刘馨琪), Xinyu Cai(蔡新雨), Chang Liu(刘畅), Qi Yao(姚岐), Xufeng Kou(寇煦丰), and Wenbo Wang(王文波). Chin. Phys. B, 2024, 33(8): 087504.
[8] Shape-influenced non-reciprocal transport of magnetic skyrmions in nanoscale channel
Jie-Yao Chen(陈杰尧), Jia Luo(罗佳), Geng-Xin Hu(胡更新), Jun-Lin Wang(王君林), Guan-Qi Li(李冠祺), Zhen-Dong Chen(陈振东), Xian-Yang Lu(陆显扬), Guo-Ping Zhao(赵国平), Yuan Liu(刘远), Jing Wu(吴竞), and Yong-Bing Xu(徐永兵). Chin. Phys. B, 2024, 33(7): 077505.
[9] Consistency between domain wall oscillation modes and spin wave modes in nanostrips
Xinwei Dong(董新伟) and Zhenjiang Wu(吴振江). Chin. Phys. B, 2024, 33(6): 067502.
[10] Creation and annihilation of artificial magnetic skyrmions with the electric field
Jun Cheng(程军), Liang Sun(孙亮), Yike Zhang(张一可), Tongzhou Ji(吉同舟), Rongxing Cao(曹荣幸), Bingfeng Miao(缪冰锋), Yonggang Zhao(赵永刚), and Haifeng Ding(丁海峰). Chin. Phys. B, 2024, 33(3): 037501.
[11] A chaotic hierarchical encryption/watermark embedding scheme for multi-medical images based on row-column confusion and closed-loop bi-directional diffusion
Zheyi Zhang(张哲祎), Jun Mou(牟俊), Santo Banerjee, and Yinghong Cao(曹颖鸿). Chin. Phys. B, 2024, 33(2): 020503.
[12] Dynamic properties of the magnetic skyrmion driven by electromagnetic waves with spin angular momentum and orbital angular momentum
Longfei Guo(郭龙飞), Bing Zha(查兵), Xiaoqiao Sun(孙晓乔), Songmei Ni(倪松梅), Ruiyu Huang(黄瑞玉), Lin Chen(陈琳), and Zhikuo Tao(陶志阔). Chin. Phys. B, 2024, 33(11): 117501.
[13] Skyrmion motion induced by spin-waves on magnetic nanotubes
Tijjani Abdulrazak, Xuejuan Liu(刘雪娟), Zhenyu Wang(王振宇), Yunshan Cao(曹云姗), and Peng Yan(严鹏). Chin. Phys. B, 2024, 33(10): 107504.
[14] Polarity-controllable magnetic skyrmion filter
Xiao-Lin Ai(艾啸林), Hui-Ting Li(李慧婷), Xue-Feng Zhang(张雪枫), Chang-Feng Li(李昌锋), Je-Ho Shim(沈帝虎), Xiao-Ping Ma(马晓萍), and Hong-Guang Piao(朴红光). Chin. Phys. B, 2024, 33(10): 107502.
[15] Tunable dispersion relations manipulated by strain in skyrmion-based magnonic crystals
Zhao-Nian Jin(金兆年), Xuan-Lin He(何宣霖), Chao Yu(于超), Henan Fang(方贺男), Lin Chen(陈琳), and Zhi-Kuo Tao(陶志阔). Chin. Phys. B, 2024, 33(1): 017501.
No Suggested Reading articles found!