Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 027503    DOI: 10.1088/1674-1056/ad92fd
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev  

Thickness-dependent magnetic property of FeNi thin film grown on flexible graphene substrate

Suixin Zhan(詹遂鑫)1,2, Shaokang Yuan(袁少康)1,2, Yuming Bai(白宇明)3, Fu Liu(刘福)4, Bohan Zhang(张博涵)1,2, Weijia Han(韩卫家)1,2, Tao Wang(王韬)3, Shengxiang Wang(汪胜祥)1,2,†, and Cai Zhou(周偲)1,2,‡
1 State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China;
2 School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430200, China;
3 School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China;
4 Key Laboratory for Magnetism and Magnetic Materials, Ministry of Education, Lanzhou University, Lanzhou 730000, China
Abstract  Electronics over flexible substrates offer advantages of flexibility, portability and low cost, and promising applications in the areas of energy, information, defense science and medical service. In recent years, tremendous progress has been witnessed in the development of flexible wearable devices that can be potentially massively deployed. Of particular interest are intelligent wearable devices, such as sensors and storage cells, which can be integrated by flexible magnetoelectronic devices based on magnetic thin films. To examine this further, the magnetic properties of FeNi thin films with different thicknesses grown on flexible graphene substrate are investigated at room temperature. The coercivity increases with increasing thicknesses of FeNi thin film, which can be attributed to the increase of grain size and decrease of surface roughness. Moreover, the thickness modulated magnetic property shows a magnetic anisotropy shift increase with varying thicknesses of FeNi thin film by using measurements based on ferromagnetic resonance, which further enhances the resonance frequency. In addition, the resonance peak is quite stable after bending it for ten cycles. The result is promising for the future design of flexible magnetoelectronic devices.
Keywords:  resonance frequency      FeNi thin film      flexible graphene substrate      magnetic property  
Received:  16 August 2024      Revised:  09 October 2024      Accepted manuscript online:  15 November 2024
PACS:  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
  32.30.Dx (Magnetic resonance spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51901163 and 12104171), the Fundamental Research Funds for the Central Universities (Grant No. 2021XXJS025), and the Natural Science Foundation of Hubei Province (Grants No. 2024AFB888).
Corresponding Authors:  Shengxiang Wang, Cai Zhou     E-mail:  shxwang@wtu.edu.cn;szhou@wtu.edu.cn

Cite this article: 

Suixin Zhan(詹遂鑫), Shaokang Yuan(袁少康), Yuming Bai(白宇明), Fu Liu(刘福), Bohan Zhang(张博涵), Weijia Han(韩卫家), Tao Wang(王韬), Shengxiang Wang(汪胜祥), and Cai Zhou(周偲) Thickness-dependent magnetic property of FeNi thin film grown on flexible graphene substrate 2025 Chin. Phys. B 34 027503

[1] Fish G E 1990 Proc. IEEE 78 947
[2] Arai K I and Ishiyama K 1994 J. Magn. Magn. Mater. 133 233
[3] Silveyra J M, Ferrara, Huber E D L and Monson T C 2018 Science 362
[4] Meiklejohn W H and Bean C P 1957 Phys. Rev. 105 904
[5] Johnson M T, Bloemen P J H, den Broeder F J A and de Vries J J 1996 Rep. Prog. Phys. 59 1409
[6] Xue D S, Li F S, Fan X L and Wen F S 2008 Chin. Phys. Lett. 25 4120
[7] Fan X L, Xue D S, Lin M, Zhang Z M, Guo D W, Jiang C J and Wei J Q 2008 Appl. Phys. Lett. 92 222505
[8] Zhou C, Shen L K, Liu M, Gao C X, Jia C L, Jiang C J and Xue D S 2018 Adv. Funct. Mater. 28 1707027
[9] Liu W L, Ao D, Liu C J, Wang X, Dong S H, Ren H J, Xia A and Tang G Q 2022 J. Magn. Magn. Mater. 551 169134
[10] Zhao S S, Zhou Z Y, Li C L, Peng B, Hu Z Q and Liu M 2018 ACS Nano 12 7167
[11] Lu L J, Ding W Q, Liu J Q and Yang B 2020 Nano Energy 78 105251
[12] Matsumoto H, Ota S, Koyama T and Chiba D 2021 Appl. Phys. Lett. 118 022406
[13] Zhang H, Li Y Y, Yang M Y, Zhang B, Yang G, Wang S G and Wang K Y 2015 Chin. Phys. B 24 077501
[14] Liu J, Chen J N, Zhang Y R, Fu S J, Chai G Z, Cao C M, Zhu X Y, Guo Y B, Cheng W J, Jiang D M, Zhao Z J and Zhan Q F 2021 ACS Appl. Mater. & Inter. 13 29975
[15] Wang Y F, Zhang Q, Xu H M, Xi G, Chang Y H, Zhang J R, He X D, Zuo Y L, Cui B S and Xi L 2024 Chin. Phys. Lett. 41 067502
[16] Zhou C, Yuan S K, Zhu D Y, Bai Y M, Wang T, Liu F F, Pan L L, Feng C F, Zhang B H and He D P 2024 Chin. Phys. B 33 037506
[17] Fan C, Wu B, Song R G, Zhao Y T, Zhang Y H and He D P 2019 Carbon 155 506
[18] Song R G, Mao B Y, Wang Z, Hui Y Y, Zhang N, Fang R, Zhang J W, Wu Y, Ge Q, Novoselov K S and He D P 2023 PNAS 120 e2209807120
[19] QianW, Fu H Q, Sun Y,Wang Z,Wu H, Kou Z K, Li BW, He D P and Nan C W 2022 Adv. Mater. 34 2206101
[20] Liu W, Liu N J, Ji S L, Hua H F, Ma Y H, Hu R Y, Zhang J, Chu L, Li X A and Huang W 2020 Nano-Micro Lett. 12 119
[21] Zhang S L, Zhan Q F, Yu Y, Liu L P, Li H H, Yang H L, Xie Y L,Wang B M, Xie S H and Li R W 2016 Appl. Phys. Lett. 108 102409
[22] Herzer G 1990 IEEE Trans. Magn. 26 1397
[23] Mecking N, Gui Y S and Hu C M 2007 Phys. Rev. B 76 224430
[24] Kittel C 1948 Phys. Rev 73 155
[25] Kraft O, Schwaiger R and Wellner P 2001 Mat. Sci. Eng. A 319 919
[1] Spin wave resonance frequency in bilayer ferromagnetic films with the biquadratic exchange interaction
Xiaojie Zhang(张晓洁), Yuting Wang(王雨汀), Yanqiu Chang(常艳秋), Huan Wang(王焕), Jianhong Rong(荣建红), and Guohong Yun(云国宏). Chin. Phys. B, 2024, 33(9): 097601.
[2] Enhanced resonance frequency in Co2FeAl thin film with different thicknesses grown on flexible graphene substrate
Cai Zhou(周偲), Shaokang Yuan(袁少康), Dengyu Zhu(朱登玉), Yuming Bai(白宇明), Tao Wang(王韬), Fufu Liu(刘福福), Lulu Pan(潘禄禄), Cunfang Feng(冯存芳), Bohan Zhang(张博涵), Daping He(何大平), and Shengxiang Wang(汪胜祥). Chin. Phys. B, 2024, 33(3): 037506.
[3] Design of a low-frequency miniaturized piezoelectric antenna based on acoustically actuated principle
Yong Zhang(张勇), Zhong-Ming Yan(严仲明), Tian-Hao Han(韩天浩), Shuang-Shuang Zhu(朱双双), Yu Wang(王豫), and Hong-Cheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(7): 077702.
[4] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[5] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[6] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[7] High-frequency magnetic properties and core loss of carbonyl iron composites with easy plane-like structures
Guo-Wu Wang(王国武), Chun-Sheng Guo(郭春生), Liang Qiao(乔亮), Tao Wang(王涛), and Fa-Shen Li(李发伸). Chin. Phys. B, 2021, 30(2): 027504.
[8] First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2
Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌). Chin. Phys. B, 2020, 29(9): 097102.
[9] Effects of 3d-transition metal doping on the electronic and magnetic properties of one-dimensional diamond nanothread
Zhenzhen Miao(苗珍珍), Can Cao(曹粲), Bei Zhang(张蓓), Haiming Duan(段海明), Mengqiu Long(龙孟秋). Chin. Phys. B, 2020, 29(6): 066101.
[10] Analysis of iris-loaded resonance cavity in miniaturized maser
Zu-Gen Guo(郭祖根), Yong Zhang(张勇), Tao Tang(唐涛), Zhan-Liang Wang(王战亮), Yu-Bin Gong(宫玉彬), Fei Xiao(肖飞), Hua-Rong Gong(巩华荣). Chin. Phys. B, 2020, 29(5): 050601.
[11] Structural evolutions and electronic properties of AunGd (n=6-15) small clusters: A first principles study
Han-Xing Zhang(张汉星), Chao-Hao Hu(胡朝浩), Dian-Hui Wang(王殿辉), Yan Zhong(钟燕), Huai-Ying Zhou(周怀营), Guang-Hui Rao(饶光辉). Chin. Phys. B, 2018, 27(8): 083601.
[12] The magnetic properties and magnetocaloric effects in binary R-T (R=Pr, Gd, Tb, Dy, Ho, Er, Tm; T=Ga, Ni, Co, Cu) intermetallic compounds
Xin-Qi Zheng(郑新奇), Bao-Gen Shen(沈保根). Chin. Phys. B, 2017, 26(2): 027501.
[13] Novel Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites: High-efficiency and magnetic recyclable catalysts for organic dye degradation
Chao Li(李超), Jun-Jie Sun(孙俊杰), Duo Chen(陈铎), Guang-Bing Han(韩广兵), Shu-Yun Yu(于淑云), Shi-Shou Kang(康仕寿), Liang-Mo Mei(梅良模). Chin. Phys. B, 2016, 25(8): 088201.
[14] Effects of terbium sulfide addition on magnetic properties, microstructure and thermal stability of sintered Nd—Fe—B magnets
Xiang-Bin Li(李向斌), Shuo Liu(刘硕), Xue-Jing Cao(曹学静), Bei-Bei Zhou(周贝贝), Ling Chen(陈岭), A-Ru Yan(闫阿儒), Gao-Lin Yan(严高林). Chin. Phys. B, 2016, 25(7): 077502.
[15] A-site ordered perovskiteCaCu3Cu2Ir2O12-δ with square-planar and octahedral coordinated Cu ions
Qing Zhao(赵庆), Yun-Yu Yin(殷云宇), Jian-Hong Dai(戴建洪), Xi Shen(沈希), Zhi-Wei Hu(胡志伟), Jun-Ye Yang(杨俊叶), Qing-Tao Wang(王清涛), Ri-Cheng Yu(禹日成), Xiao-Dong Li(李晓东), You-Wen Long(龙有文). Chin. Phys. B, 2016, 25(2): 020701.
No Suggested Reading articles found!