TOPICIAL REVIEW — Moiré physics in two-dimensional materials |
Prev
Next
|
|
|
Manipulating optical and electronic properties through interfacial ferroelectricity |
Yulu Liu(刘钰璐)1, Gan Liu(刘敢)1, and Xiaoxiang Xi(奚啸翔)1,2,3,† |
1 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China; 2 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China; 3 Jiangsu Physical Science Research Center, Nanjing 210093, China |
|
|
Abstract Interfacial ferroelectricity is a recently established mechanism for generating spontaneous reversible electric polarization, arising from the charge transfer between stacked van der Waals layered atomic crystals. It has been realized in both naturally formed multilayer crystals and moiré superlattices. Owing to the large number of material choices and combinations, this approach is highly versatile, greatly expanding the scope of ultrathin ferroelectrics. A key advantage of interfacial ferroelectricity is its potential to couple with preexisting properties of the constituent layers, enabling their electrical manipulation through ferroelectric switching and paving the way for advanced device functionalities. This review article summarizes recent experimental progress in interfacial ferroelectricity, with an emphasis on its coupling with a variety of electronic properties. After introducing the underlying mechanism of interfacial ferroelectricity and the range of material systems discovered to date, we highlight selected examples showcasing ferroelectric control of excitonic optical properties, Berry curvature effects, and superconductivity. We also discuss the challenges and opportunities that await further studies in this field.
|
Received: 27 September 2024
Revised: 02 November 2024
Accepted manuscript online: 19 November 2024
|
PACS:
|
77.80.-e
|
(Ferroelectricity and antiferroelectricity)
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
Fund: Project supported by the Natural Science Foundation of Jiangsu Province (Grant Nos. BK20231529 and BK20233001), the National Key Research and Development Program of China (Grant No. 2024YFA1409100), the Fundamental Research Funds for the Central Universities (Grant No. 0204-14380233), the National Natural Science Foundation of China (Grant Nos. 12474170 and 123B2059), and the National Postdoctoral Program for Innovative Talents (Grant No. BX20240160). |
Corresponding Authors:
Xiaoxiang Xi
E-mail: xxi@nju.edu.edu
|
Cite this article:
Yulu Liu(刘钰璐), Gan Liu(刘敢), and Xiaoxiang Xi(奚啸翔) Manipulating optical and electronic properties through interfacial ferroelectricity 2025 Chin. Phys. B 34 017701
|
[1] Wadhawan V 2000 Introduction to Ferroic Materials, 1st Edn. (CRC Press) [2] Rabe K M, Ahn C H and Triscone J M (eds) 2007 Physics of Ferroelectrics: A Modern Perspective (Berlin, Heidelberg: Springer Berlin Heidelberg) [3] Dawber M, Rabe K M and Scott J F 2005 Rev. Mod. Phys. 77 1083 [4] Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X and Ji S H 2016 Science 353 274 [5] Ji D, Cai S, Paudel T R, Sun H, Zhang C, Han L, Wei Y, Zang Y, Gu M, Zhang Y, Gao W, Huyan H, Guo W, Wu D, Gu Z, Tsymbal E Y, Wang P, Nie Y and Pan X 2019 Nature 570 87 [6] Cheema S S, Kwon D, Shanker N, dos Reis R, Hsu S L, Xiao J, Zhang H, Wagner R, Datar A, McCarter M R, Serrao C R, Yadav A K, Karbasian G, Hsu C H, Tan A J, Wang L C, Thakare V, Zhang X, Mehta A, Karapetrova E, Chopdekar R V, Shafer P, Arenholz E, Hu C, Proksch R, Ramesh R, Ciston J and Salahuddin S 2020 Nature 580 478 [7] Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J and Liu Z 2016 Nat. Commun. 7 12357 [8] Zhou Y, Wu D, Zhu Y, Cho Y, He Q, Yang X, Herrera K, Chu Z, Han Y, Downer M C, Peng H and Lai K 2017 Nano Lett. 17 5508 [9] Cui C, Hu W J, Yan X, Addiego C, Gao W, Wang Y, Wang Z, Li L, Cheng Y, Li P, Zhang X, Alshareef H N, Wu T, Zhu W, Pan X and Li L J 2018 Nano Lett. 18 1253 [10] Xiao J, Zhu H, Wang Y, Feng W, Hu Y, Dasgupta A, Han Y, Wang Y, Muller D A, Martin L W, Hu P and Zhang X 2018 Phys. Rev. Lett. 120 227601 [11] Yuan S, Luo X, Chan H L, Xiao C, Dai Y, Xie M and Hao J 2019 Nat. Commun. 10 1775 [12] Gou J, Bai H, Zhang X, Huang Y L, Duan S, Ariando A, Yang S A, Chen L, Lu Y and Wee A T S 2023 Nature 617 67 [13] Li L and Wu M 2017 ACS Nano 11 6382 [14] Fei Z, Zhao W, Palomaki T A, Sun B, Miller M K, Zhao Z, Yan J, Xu X and Cobden D H 2018 Nature 560 336 [15] Yasuda K, Wang X R, Watanabe K, Taniguchi T and Jarillo-Herrero P 2021 Science 372 1458 [16] Stern M V, Waschitz Y, Cao W, Nevo I, Watanabe K, Taniguchi T, Sela E, Urbakh M, Hod O and Ben Shalom M 2021 Science 372 1462 [17] Guan Z, Hu H, Shen X, Xiang P, Zhong N, Chu J and Duan C 2020 Adv. Electron. Mater. 6 1900818 [18] Wu M H and Li J 2022 Proc. Natl. Acad. Sci. USA 118 e2115703118 [19] Zhang D, Schoenherr P, Sharma P and Seidel J 2023 Nat. Rev. Mater. 8 25 [20] Zhang X and Peng B 2023 J. Semicond. 44 011002 [21] Fan Z, Qu J, Wang T, Wen Y, An Z, Jiang Q, Xue W, Zhou P and Xu X 2023 Chin. Phys. B 32 128508 [22] Chen J, Cui P and Zhang Z 2024 Adv. Funct. Mater. 34 2408625 [23] Li S, Wang F, Wang Y, Yang J, Wang X, Zhan X, He J and Wang Z 2024 Adv. Mater. 36 2301472 [24] Ji J, Yu G, Xu C and Xiang H J 2023 Phys. Rev. Lett. 130 146801 [25] Wang L, Qi J, Wei W, Wu M, Zhang Z, Li X, Sun H, Guo Q, Cao M, Wang Q, Zhao C, Sheng Y, Liu Z, Liu C, Wu M, Xu Z, Wang W, Hong H, Gao P, Wu M, Wang Z J, Xu X, Wang E, Ding F, Zheng X, Liu K and Bai X 2024 Nature 629 74 [26] Yasuda K, Zalys-Geller E, Wang X, Bennett D, Cheema S S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P and Ashoori R 2024 Science 385 53 [27] Meng P, Wu Y Z, Bian R J, Pan E, Dong B, Zhao X X, Chen J G, Wu L S, Sun Y Q, Fu Q D, Liu Q, Shi D, Zhang Q, Zhang Y W, Liu Z and Liu F C 2022 Nat. Commun. 13 7696 [28] Yang D, Liang J, Wu J, Xiao Y, Dadap J I, Watanabe K, Taniguchi T and Ye Z 2024 Nat. Commun. 15 1389 [29] Bian R, He R, Pan E, Li Z, Cao G, Meng P, Chen J, Liu Q, Zhong Z, Li W and Liu F 2024 Science 385 57 [30] Jindal A, Saha A, Li Z Z, Taniguchi T, Watanabe K, Hone J C, Birol T, Fernandes R M, Dean C R, Pasupathy A N and Rhodes D A 2023 Nature 613 48 [31] Wan Y, Hu T, Mao X, Fu J, Yuan K, Song Y, Gan X, Xu X, Xue M, Cheng X, Huang C, Yang J, Dai L, Zeng H and Kan E 2022 Phys. Rev. Lett. 128 067601 [32] Wang X R, Yasuda K, Zhang Y, Liu S, Watanabe K, Taniguchi T, Hone J, Fu L and Jarillo-Herrero P 2022 Nat. Nanotechnol. 17 367 [33] Weston A, Castanon E G, Enaldiev V, Ferreira F, Bhattacharjee S, Xu S G, Corte-León H, Wu Z F, Clark N, Summerfield A, Hashimoto T, Gao Y Z, Wang W D, Hamer M, Read H, Fumagalli L, Kretinin A V, Haigh S J, Kazakova O, Geim A K, Fal’ko V I and Gorbachev R 2022 Nat. Nanotechnol. 17 390 [34] Van Winkle M, Dowlatshahi N, Khaloo N, Iyer M, Craig I M, Dhall R, Taniguchi T, Watanabe K and Bediako D K 2024 Nat. Nanotechnol. 19 751 [35] Xiao J, Wang Y, Wang H, Pemmaraju C D, Wang S, Muscher P, Sie E J, Nyby C M, Devereaux T P, Qian X, Zhang X and Lindenberg A M 2020 Nat. Phys. 16 1028 [36] Sharma P, Xiang F X, Shao D F, Zhang D, Tsymbal E Y, Hamilton A R and Seidel J 2019 Sci. Adv. 5 eaax5080 [37] Deb S, Cao W, Raab N, Watanabe K, Taniguchi T, Goldstein M, Kronik L, Urbakh M, Hod O and Ben Shalom M 2022 Nature 612 465 [38] Rogée L, Wang L, Zhang Y, Cai S H, Wang P, Chhowalla M, Ji W and Lau S P 2022 Science 376 973 [39] Zheng Z R, Ma Q, Bi Z, de la Barrera S, Liu M H, Mao N N, Zhang Y, Kiper N, Watanabe K, Taniguchi T, Kong J, Tisdale W A, Ashoori R, Gedik N, Fu L, Xu S Y and Jarillo-Herrero P 2020 Nature 588 71 [40] Niu R R, Li Z X, Han X Y, Qu Z Z, Ding D D, Wang Z Y, Liu Q L, Liu T Y, Han C R, Watanabe K, Taniguchi T, Wu M H, Ren Q, Wang X Y, Hong J W, Mao J H, Han Z, Liu K H, Gan Z Z and Lu J M 2022 Nat. Commun. 13 6241 [41] Niu R, Li Z, Han X, Liu Q, Qu Z, Wang Z, Han C, Watanabe K, Taniguchi T, Liu K, Mao J, Shi W, Peng B, Han Z V, Gan Z and Lu J 2024 arXiv:2403.17326[cond-mat.mtrl-sci] [42] Yan X, Zheng Z, Sangwan V K, Qian J H, Wang X, Liu S E, Watanabe K, Taniguchi T, Xu S Y, Jarillo-Herrero P, Ma Q and Hersam M C 2023 Nature 624 551 [43] Mak K F and Shan J 2016 Nat. Photon. 10 216 [44] Weston A, Zou Y, Enaldiev V, Summerfield A, Clark N, Zólyomi V, Graham A, Yelgel C, Magorrian S, Zhou M, Zultak J, Hopkinson D, Barinov A, Bointon T H, Kretinin A, Wilson N R, Beton P H, Fal’ko V I, Haigh S J and Gorbachev R 2020 Nat. Nanotechnol. 15 592 [45] Sung J, Zhou Y, Scuri G, Zólyomi V, Andersen T I, Yoo H, Wild D S, Joe A Y, Gelly R J, Heo H, Magorrian S J, Bérubé D, Valdivia A M M, Taniguchi T, Watanabe K, Lukin M D, Kim P, Fal’ko V I and Park H 2020 Nat. Nanotechnol. 15 750 [46] Ciarrocchi A, Unuchek D, Avsar A, Watanabe K, Taniguchi T and Kis A 2019 Nat. Photon. 13 131 [47] Deb S, Krause J, Faria Junior P E, Kempf M A, Schwartz R, Watanabe K, Taniguchi T, Fabian J and Korn T 2024 Nat. Commun. 15 7595 [48] Andersen T I, Scuri G, Sushko A, De Greve K, Sung J, Zhou Y, Wild D S, Gelly R J, Heo H, Bérubé D, Joe A Y, Jauregui L A, Watanabe K, Taniguchi T, Kim P, Park H and Lukin M D 2021 Nat. Mater. 20 480 [49] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959 [50] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495 [51] Li P, Wen Y, He X, Zhang Q, Xia C, Yu Z M, Yang S A, Zhu Z, Alshareef H N and Zhang X X 2017 Nat. Commun. 8 2150 [52] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P and Cava R J 2014 Nature 514 205 [53] Wu S, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 359 76 [54] Fatemi V, Wu S, Cao Y, Bretheau L, Gibson Q D, Watanabe K, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 362 926 [55] Sajadi E, Palomaki T, Fei Z, Zhao W, Bement P, Olsen C, Luescher S, Xu X, Folk J A and Cobden D H 2018 Science 362 922 [56] Jia Y, Wang P, Chiu C L, Song Z, Yu G, Jack B, Lei S, Klemenz S, Cevallos F A, Onyszczak M, Fishchenko N, Liu X, Farahi G, Xie F, Xu Y, Watanabe K, Taniguchi T, Bernevig B A, Cava R J, Schoop L M, Yazdani A and Wu S 2022 Nat. Phys. 18 87 [57] Sun B, Zhao W, Palomaki T, Fei Z, Runburg E, Malinowski P, Huang X, Cenker J, Cui Y T, Chu J H, Xu X, Ataei S S, Varsano D, Palummo M, Molinari E, Rontani M and Cobden D H 2022 Nat. Phys. 18 94 [58] Qian X, Liu J, Fu L and Li J 2014 Science 346 1344 [59] Ma Q, Xu S Y, Shen H, MacNeill D, Fatemi V, Chang T R, Mier Valdivia A M, Wu S, Du Z, Hsu C H, Fang S, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Kaxiras E, Lu H Z, Lin H, Fu L, Gedik N and Jarillo-Herrero P 2019 Nature 565 337 [60] Kang K, Li T, Sohn E, Shan J and Mak K F 2019 Nat. Mater. 18 324 [61] Sodemann I and Fu L 2015 Phys. Rev. Lett. 115 216806 [62] Wang H and Qian X 2019 npj Comput. Mater. 5 119 [63] Yang Q, Wu M and Li J 2018 J. Phys. Chem. Lett. 9 7160 [64] Kang K, Zhao W, Zeng Y, Watanabe K, Taniguchi T, Shan J and Mak K F 2023 Nat. Nanotechnol. 18 861 [65] Chen M, Xie Y, Cheng B, Yang Z, Li X Z, Chen F, Li Q, Xie J, Watanabe K, Taniguchi T, He W Y, Wu M, Liang S J and Miao F 2024 Nat. Nanotechnol. 19 962 [66] Nuckolls K P, Oh M, Wong D, Lian B, Watanabe K, Taniguchi T, Bernevig B A and Yazdani A 2020 Nature 588 610 [67] Saito Y, Ge J, Rademaker L, Watanabe K, Taniguchi T, Abanin D A and Young A F 2021 Nat. Phys. 17 478 [68] Choi Y, Kim H, Peng Y, Thomson A, Lewandowski C, Polski R, Zhang Y, Arora H S, Watanabe K, Taniguchi T, Alicea J and Nadj-Perge S 2021 Nature 589 536 [69] Wu S, Zhang Z, Watanabe K, Taniguchi T and Andrei E Y 2021 Nat. Mater. 20 488 [70] Das I, Lu X, Herzog-Arbeitman J, Song Z D, Watanabe K, Taniguchi T, Bernevig B A and Efetov D K 2021 Nat. Phys. 17 710 [71] Park J M, Cao Y, Watanabe K, Taniguchi T and Jarillo-Herrero P 2021 Nature 592 43 [72] Pierce A T, Xie Y, Park J M, Khalaf E, Lee S H, Cao Y, Parker D E, Forrester P R, Chen S, Watanabe K, Taniguchi T, Vishwanath A, Jarillo-Herrero P and Yacoby A 2021 Nat. Phys. 17 1210 [73] Klein D R, Xia L Q, MacNeill D, Watanabe K, Taniguchi T and JarilloHerrero P 2023 Nat. Nanotechnol. 18 331 [74] Liang Y, Mao N, Dai Y, Kou L Z, Huang B B and Ma Y D 2021 npj Comput. Mater. 7 172 [75] Wu F, Lovorn T, Tutuc E, Martin I and MacDonald A H 2019 Phys. Rev. Lett. 122 086402 [76] Cai J, Anderson E, Wang C, Zhang X, Liu X, Holtzmann W, Zhang Y, Fan F, Taniguchi T, Watanabe K, Ran Y, Cao T, Fu L, Xiao D, Yao W and Xu X 2023 Nature 622 63 [77] Zeng Y, Xia Z, Kang K, Zhu J, Knüppel P, Vaswani C, Watanabe K, Taniguchi T, Mak K F and Shan J 2023 Nature 622 69 [78] Park H, Cai J, Anderson E, Zhang Y, Zhu J, Liu X, Wang C, Holtzmann W, Hu C, Liu Z, Taniguchi T, Watanabe K, Chu J H, Cao T, Fu L, Yao W, Chang C Z, Cobden D, Xiao D and Xu X 2023 Nature 622 74 [79] Xu F, Sun Z, Jia T, Liu C, Xu C, Li C, Gu Y, Watanabe K, Taniguchi T, Tong B, Jia J, Shi Z, Jiang S, Zhang Y, Liu X and Li T 2023 Phys. Rev. X 13 031037 [80] Foutty B A, Kometter C R, Devakul T, Reddy A P, Watanabe K, Taniguchi T, Fu L and Feldman B E 2024 Science 384 343 [81] Zhang X W, Wang C, Liu X, Fan Y, Cao T and Xiao D 2024 Nat. Commun. 15 4223 [82] Ahn C H, Bhattacharya A, Di Ventra M, Eckstein J N, Frisbie C D, Gershenson M E, Goldman A M, Inoue I H, Mannhart J, Millis A J, Morpurgo A F, Natelson D and Triscone J M 2006 Rev. Mod. Phys. 78 1185 [83] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, SanchezYamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80 [84] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [85] Rhodes D A, Jindal A, Yuan N F Q, Jung Y, Antony A, Wang H, Kim B, Chiu Y c, Taniguchi T, Watanabe K, Barmak K, Balicas L, Dean C R, Qian X, Fu L, Pasupathy A N and Hone J 2021 Nano Lett. 21 2505 [86] Zhai B, Li B, Wen Y, Wu F and He J 2022 Phys. Rev. B 106 L140505 [87] Qin B, Ma C, Guo Q, Li X, Wei W, Ma C, Wang Q, Liu F, Zhao M, Xue G, Qi J, Wu M, Hong H, Du L, Zhao Q, Gao P, Wang X, Wang E, Zhang G, Liu C and Liu K 2024 Science 385 99 [88] Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forró L, Shan J and Mak K F 2016 Nat. Phys. 12 139 [89] Xi X, Berger H, Forró L, Shan J and Mak K F 2016 Phys. Rev. Lett. 117 106801 [90] Liu X, Pyatakov A P and Ren W 2020 Phys. Rev. Lett. 125 247601 [91] Liu K, Ma X, Xu S, Li Y and Zhao M 2023 npj Comput. Mater. 9 16 [92] Xun W, Wu C, Sun H, Zhang W, Wu Y Z and Li P 2024 Nano Lett. 24 3541 [93] Zhang T, Liang Y, Xu X, Huang B, Dai Y and Ma Y 2021 Phys. Rev. B 103 165420 [94] Garcia V, Bibes M, Bocher L, Valencia S, Kronast F, Crassous A, Moya X, Enouz-Vedrenne S, Gloter A, Imhoff D, Deranlot C, Mathur N D, Fusil S, Bouzehouane K and Barthélémy A 2010 Science 327 1106 [95] Chen X F, Ding X K, Gou G Y and Zeng X C 2024 Nano Lett. 24 3089 [96] Jafari H, Barts E, Przybysz P, Tenzin K, Kowalczyk P J, Dabrowski P and Sławińska J 2024 Phys. Rev. Mater. 8 024005 [97] Meier D and Selbach S M 2022 Nat. Rev. Mater. 7 157 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|