Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 017701    DOI: 10.1088/1674-1056/ad9456
TOPICIAL REVIEW — Moiré physics in two-dimensional materials Prev   Next  

Manipulating optical and electronic properties through interfacial ferroelectricity

Yulu Liu(刘钰璐)1, Gan Liu(刘敢)1, and Xiaoxiang Xi(奚啸翔)1,2,3,†
1 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China;
2 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;
3 Jiangsu Physical Science Research Center, Nanjing 210093, China
Abstract  Interfacial ferroelectricity is a recently established mechanism for generating spontaneous reversible electric polarization, arising from the charge transfer between stacked van der Waals layered atomic crystals. It has been realized in both naturally formed multilayer crystals and moiré superlattices. Owing to the large number of material choices and combinations, this approach is highly versatile, greatly expanding the scope of ultrathin ferroelectrics. A key advantage of interfacial ferroelectricity is its potential to couple with preexisting properties of the constituent layers, enabling their electrical manipulation through ferroelectric switching and paving the way for advanced device functionalities. This review article summarizes recent experimental progress in interfacial ferroelectricity, with an emphasis on its coupling with a variety of electronic properties. After introducing the underlying mechanism of interfacial ferroelectricity and the range of material systems discovered to date, we highlight selected examples showcasing ferroelectric control of excitonic optical properties, Berry curvature effects, and superconductivity. We also discuss the challenges and opportunities that await further studies in this field.
Keywords:  interfacial ferroelectricity      sliding ferroelectricity      moiré ferroelectricity  
Received:  27 September 2024      Revised:  02 November 2024      Accepted manuscript online:  19 November 2024
PACS:  77.80.-e (Ferroelectricity and antiferroelectricity)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Fund: Project supported by the Natural Science Foundation of Jiangsu Province (Grant Nos. BK20231529 and BK20233001), the National Key Research and Development Program of China (Grant No. 2024YFA1409100), the Fundamental Research Funds for the Central Universities (Grant No. 0204-14380233), the National Natural Science Foundation of China (Grant Nos. 12474170 and 123B2059), and the National Postdoctoral Program for Innovative Talents (Grant No. BX20240160).
Corresponding Authors:  Xiaoxiang Xi     E-mail:  xxi@nju.edu.edu

Cite this article: 

Yulu Liu(刘钰璐), Gan Liu(刘敢), and Xiaoxiang Xi(奚啸翔) Manipulating optical and electronic properties through interfacial ferroelectricity 2025 Chin. Phys. B 34 017701

[1] Wadhawan V 2000 Introduction to Ferroic Materials, 1st Edn. (CRC Press)
[2] Rabe K M, Ahn C H and Triscone J M (eds) 2007 Physics of Ferroelectrics: A Modern Perspective (Berlin, Heidelberg: Springer Berlin Heidelberg)
[3] Dawber M, Rabe K M and Scott J F 2005 Rev. Mod. Phys. 77 1083
[4] Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X and Ji S H 2016 Science 353 274
[5] Ji D, Cai S, Paudel T R, Sun H, Zhang C, Han L, Wei Y, Zang Y, Gu M, Zhang Y, Gao W, Huyan H, Guo W, Wu D, Gu Z, Tsymbal E Y, Wang P, Nie Y and Pan X 2019 Nature 570 87
[6] Cheema S S, Kwon D, Shanker N, dos Reis R, Hsu S L, Xiao J, Zhang H, Wagner R, Datar A, McCarter M R, Serrao C R, Yadav A K, Karbasian G, Hsu C H, Tan A J, Wang L C, Thakare V, Zhang X, Mehta A, Karapetrova E, Chopdekar R V, Shafer P, Arenholz E, Hu C, Proksch R, Ramesh R, Ciston J and Salahuddin S 2020 Nature 580 478
[7] Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J and Liu Z 2016 Nat. Commun. 7 12357
[8] Zhou Y, Wu D, Zhu Y, Cho Y, He Q, Yang X, Herrera K, Chu Z, Han Y, Downer M C, Peng H and Lai K 2017 Nano Lett. 17 5508
[9] Cui C, Hu W J, Yan X, Addiego C, Gao W, Wang Y, Wang Z, Li L, Cheng Y, Li P, Zhang X, Alshareef H N, Wu T, Zhu W, Pan X and Li L J 2018 Nano Lett. 18 1253
[10] Xiao J, Zhu H, Wang Y, Feng W, Hu Y, Dasgupta A, Han Y, Wang Y, Muller D A, Martin L W, Hu P and Zhang X 2018 Phys. Rev. Lett. 120 227601
[11] Yuan S, Luo X, Chan H L, Xiao C, Dai Y, Xie M and Hao J 2019 Nat. Commun. 10 1775
[12] Gou J, Bai H, Zhang X, Huang Y L, Duan S, Ariando A, Yang S A, Chen L, Lu Y and Wee A T S 2023 Nature 617 67
[13] Li L and Wu M 2017 ACS Nano 11 6382
[14] Fei Z, Zhao W, Palomaki T A, Sun B, Miller M K, Zhao Z, Yan J, Xu X and Cobden D H 2018 Nature 560 336
[15] Yasuda K, Wang X R, Watanabe K, Taniguchi T and Jarillo-Herrero P 2021 Science 372 1458
[16] Stern M V, Waschitz Y, Cao W, Nevo I, Watanabe K, Taniguchi T, Sela E, Urbakh M, Hod O and Ben Shalom M 2021 Science 372 1462
[17] Guan Z, Hu H, Shen X, Xiang P, Zhong N, Chu J and Duan C 2020 Adv. Electron. Mater. 6 1900818
[18] Wu M H and Li J 2022 Proc. Natl. Acad. Sci. USA 118 e2115703118
[19] Zhang D, Schoenherr P, Sharma P and Seidel J 2023 Nat. Rev. Mater. 8 25
[20] Zhang X and Peng B 2023 J. Semicond. 44 011002
[21] Fan Z, Qu J, Wang T, Wen Y, An Z, Jiang Q, Xue W, Zhou P and Xu X 2023 Chin. Phys. B 32 128508
[22] Chen J, Cui P and Zhang Z 2024 Adv. Funct. Mater. 34 2408625
[23] Li S, Wang F, Wang Y, Yang J, Wang X, Zhan X, He J and Wang Z 2024 Adv. Mater. 36 2301472
[24] Ji J, Yu G, Xu C and Xiang H J 2023 Phys. Rev. Lett. 130 146801
[25] Wang L, Qi J, Wei W, Wu M, Zhang Z, Li X, Sun H, Guo Q, Cao M, Wang Q, Zhao C, Sheng Y, Liu Z, Liu C, Wu M, Xu Z, Wang W, Hong H, Gao P, Wu M, Wang Z J, Xu X, Wang E, Ding F, Zheng X, Liu K and Bai X 2024 Nature 629 74
[26] Yasuda K, Zalys-Geller E, Wang X, Bennett D, Cheema S S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P and Ashoori R 2024 Science 385 53
[27] Meng P, Wu Y Z, Bian R J, Pan E, Dong B, Zhao X X, Chen J G, Wu L S, Sun Y Q, Fu Q D, Liu Q, Shi D, Zhang Q, Zhang Y W, Liu Z and Liu F C 2022 Nat. Commun. 13 7696
[28] Yang D, Liang J, Wu J, Xiao Y, Dadap J I, Watanabe K, Taniguchi T and Ye Z 2024 Nat. Commun. 15 1389
[29] Bian R, He R, Pan E, Li Z, Cao G, Meng P, Chen J, Liu Q, Zhong Z, Li W and Liu F 2024 Science 385 57
[30] Jindal A, Saha A, Li Z Z, Taniguchi T, Watanabe K, Hone J C, Birol T, Fernandes R M, Dean C R, Pasupathy A N and Rhodes D A 2023 Nature 613 48
[31] Wan Y, Hu T, Mao X, Fu J, Yuan K, Song Y, Gan X, Xu X, Xue M, Cheng X, Huang C, Yang J, Dai L, Zeng H and Kan E 2022 Phys. Rev. Lett. 128 067601
[32] Wang X R, Yasuda K, Zhang Y, Liu S, Watanabe K, Taniguchi T, Hone J, Fu L and Jarillo-Herrero P 2022 Nat. Nanotechnol. 17 367
[33] Weston A, Castanon E G, Enaldiev V, Ferreira F, Bhattacharjee S, Xu S G, Corte-León H, Wu Z F, Clark N, Summerfield A, Hashimoto T, Gao Y Z, Wang W D, Hamer M, Read H, Fumagalli L, Kretinin A V, Haigh S J, Kazakova O, Geim A K, Fal’ko V I and Gorbachev R 2022 Nat. Nanotechnol. 17 390
[34] Van Winkle M, Dowlatshahi N, Khaloo N, Iyer M, Craig I M, Dhall R, Taniguchi T, Watanabe K and Bediako D K 2024 Nat. Nanotechnol. 19 751
[35] Xiao J, Wang Y, Wang H, Pemmaraju C D, Wang S, Muscher P, Sie E J, Nyby C M, Devereaux T P, Qian X, Zhang X and Lindenberg A M 2020 Nat. Phys. 16 1028
[36] Sharma P, Xiang F X, Shao D F, Zhang D, Tsymbal E Y, Hamilton A R and Seidel J 2019 Sci. Adv. 5 eaax5080
[37] Deb S, Cao W, Raab N, Watanabe K, Taniguchi T, Goldstein M, Kronik L, Urbakh M, Hod O and Ben Shalom M 2022 Nature 612 465
[38] Rogée L, Wang L, Zhang Y, Cai S H, Wang P, Chhowalla M, Ji W and Lau S P 2022 Science 376 973
[39] Zheng Z R, Ma Q, Bi Z, de la Barrera S, Liu M H, Mao N N, Zhang Y, Kiper N, Watanabe K, Taniguchi T, Kong J, Tisdale W A, Ashoori R, Gedik N, Fu L, Xu S Y and Jarillo-Herrero P 2020 Nature 588 71
[40] Niu R R, Li Z X, Han X Y, Qu Z Z, Ding D D, Wang Z Y, Liu Q L, Liu T Y, Han C R, Watanabe K, Taniguchi T, Wu M H, Ren Q, Wang X Y, Hong J W, Mao J H, Han Z, Liu K H, Gan Z Z and Lu J M 2022 Nat. Commun. 13 6241
[41] Niu R, Li Z, Han X, Liu Q, Qu Z, Wang Z, Han C, Watanabe K, Taniguchi T, Liu K, Mao J, Shi W, Peng B, Han Z V, Gan Z and Lu J 2024 arXiv:2403.17326[cond-mat.mtrl-sci]
[42] Yan X, Zheng Z, Sangwan V K, Qian J H, Wang X, Liu S E, Watanabe K, Taniguchi T, Xu S Y, Jarillo-Herrero P, Ma Q and Hersam M C 2023 Nature 624 551
[43] Mak K F and Shan J 2016 Nat. Photon. 10 216
[44] Weston A, Zou Y, Enaldiev V, Summerfield A, Clark N, Zólyomi V, Graham A, Yelgel C, Magorrian S, Zhou M, Zultak J, Hopkinson D, Barinov A, Bointon T H, Kretinin A, Wilson N R, Beton P H, Fal’ko V I, Haigh S J and Gorbachev R 2020 Nat. Nanotechnol. 15 592
[45] Sung J, Zhou Y, Scuri G, Zólyomi V, Andersen T I, Yoo H, Wild D S, Joe A Y, Gelly R J, Heo H, Magorrian S J, Bérubé D, Valdivia A M M, Taniguchi T, Watanabe K, Lukin M D, Kim P, Fal’ko V I and Park H 2020 Nat. Nanotechnol. 15 750
[46] Ciarrocchi A, Unuchek D, Avsar A, Watanabe K, Taniguchi T and Kis A 2019 Nat. Photon. 13 131
[47] Deb S, Krause J, Faria Junior P E, Kempf M A, Schwartz R, Watanabe K, Taniguchi T, Fabian J and Korn T 2024 Nat. Commun. 15 7595
[48] Andersen T I, Scuri G, Sushko A, De Greve K, Sung J, Zhou Y, Wild D S, Gelly R J, Heo H, Bérubé D, Joe A Y, Jauregui L A, Watanabe K, Taniguchi T, Kim P, Park H and Lukin M D 2021 Nat. Mater. 20 480
[49] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[50] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495
[51] Li P, Wen Y, He X, Zhang Q, Xia C, Yu Z M, Yang S A, Zhu Z, Alshareef H N and Zhang X X 2017 Nat. Commun. 8 2150
[52] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P and Cava R J 2014 Nature 514 205
[53] Wu S, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 359 76
[54] Fatemi V, Wu S, Cao Y, Bretheau L, Gibson Q D, Watanabe K, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 362 926
[55] Sajadi E, Palomaki T, Fei Z, Zhao W, Bement P, Olsen C, Luescher S, Xu X, Folk J A and Cobden D H 2018 Science 362 922
[56] Jia Y, Wang P, Chiu C L, Song Z, Yu G, Jack B, Lei S, Klemenz S, Cevallos F A, Onyszczak M, Fishchenko N, Liu X, Farahi G, Xie F, Xu Y, Watanabe K, Taniguchi T, Bernevig B A, Cava R J, Schoop L M, Yazdani A and Wu S 2022 Nat. Phys. 18 87
[57] Sun B, Zhao W, Palomaki T, Fei Z, Runburg E, Malinowski P, Huang X, Cenker J, Cui Y T, Chu J H, Xu X, Ataei S S, Varsano D, Palummo M, Molinari E, Rontani M and Cobden D H 2022 Nat. Phys. 18 94
[58] Qian X, Liu J, Fu L and Li J 2014 Science 346 1344
[59] Ma Q, Xu S Y, Shen H, MacNeill D, Fatemi V, Chang T R, Mier Valdivia A M, Wu S, Du Z, Hsu C H, Fang S, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Kaxiras E, Lu H Z, Lin H, Fu L, Gedik N and Jarillo-Herrero P 2019 Nature 565 337
[60] Kang K, Li T, Sohn E, Shan J and Mak K F 2019 Nat. Mater. 18 324
[61] Sodemann I and Fu L 2015 Phys. Rev. Lett. 115 216806
[62] Wang H and Qian X 2019 npj Comput. Mater. 5 119
[63] Yang Q, Wu M and Li J 2018 J. Phys. Chem. Lett. 9 7160
[64] Kang K, Zhao W, Zeng Y, Watanabe K, Taniguchi T, Shan J and Mak K F 2023 Nat. Nanotechnol. 18 861
[65] Chen M, Xie Y, Cheng B, Yang Z, Li X Z, Chen F, Li Q, Xie J, Watanabe K, Taniguchi T, He W Y, Wu M, Liang S J and Miao F 2024 Nat. Nanotechnol. 19 962
[66] Nuckolls K P, Oh M, Wong D, Lian B, Watanabe K, Taniguchi T, Bernevig B A and Yazdani A 2020 Nature 588 610
[67] Saito Y, Ge J, Rademaker L, Watanabe K, Taniguchi T, Abanin D A and Young A F 2021 Nat. Phys. 17 478
[68] Choi Y, Kim H, Peng Y, Thomson A, Lewandowski C, Polski R, Zhang Y, Arora H S, Watanabe K, Taniguchi T, Alicea J and Nadj-Perge S 2021 Nature 589 536
[69] Wu S, Zhang Z, Watanabe K, Taniguchi T and Andrei E Y 2021 Nat. Mater. 20 488
[70] Das I, Lu X, Herzog-Arbeitman J, Song Z D, Watanabe K, Taniguchi T, Bernevig B A and Efetov D K 2021 Nat. Phys. 17 710
[71] Park J M, Cao Y, Watanabe K, Taniguchi T and Jarillo-Herrero P 2021 Nature 592 43
[72] Pierce A T, Xie Y, Park J M, Khalaf E, Lee S H, Cao Y, Parker D E, Forrester P R, Chen S, Watanabe K, Taniguchi T, Vishwanath A, Jarillo-Herrero P and Yacoby A 2021 Nat. Phys. 17 1210
[73] Klein D R, Xia L Q, MacNeill D, Watanabe K, Taniguchi T and JarilloHerrero P 2023 Nat. Nanotechnol. 18 331
[74] Liang Y, Mao N, Dai Y, Kou L Z, Huang B B and Ma Y D 2021 npj Comput. Mater. 7 172
[75] Wu F, Lovorn T, Tutuc E, Martin I and MacDonald A H 2019 Phys. Rev. Lett. 122 086402
[76] Cai J, Anderson E, Wang C, Zhang X, Liu X, Holtzmann W, Zhang Y, Fan F, Taniguchi T, Watanabe K, Ran Y, Cao T, Fu L, Xiao D, Yao W and Xu X 2023 Nature 622 63
[77] Zeng Y, Xia Z, Kang K, Zhu J, Knüppel P, Vaswani C, Watanabe K, Taniguchi T, Mak K F and Shan J 2023 Nature 622 69
[78] Park H, Cai J, Anderson E, Zhang Y, Zhu J, Liu X, Wang C, Holtzmann W, Hu C, Liu Z, Taniguchi T, Watanabe K, Chu J H, Cao T, Fu L, Yao W, Chang C Z, Cobden D, Xiao D and Xu X 2023 Nature 622 74
[79] Xu F, Sun Z, Jia T, Liu C, Xu C, Li C, Gu Y, Watanabe K, Taniguchi T, Tong B, Jia J, Shi Z, Jiang S, Zhang Y, Liu X and Li T 2023 Phys. Rev. X 13 031037
[80] Foutty B A, Kometter C R, Devakul T, Reddy A P, Watanabe K, Taniguchi T, Fu L and Feldman B E 2024 Science 384 343
[81] Zhang X W, Wang C, Liu X, Fan Y, Cao T and Xiao D 2024 Nat. Commun. 15 4223
[82] Ahn C H, Bhattacharya A, Di Ventra M, Eckstein J N, Frisbie C D, Gershenson M E, Goldman A M, Inoue I H, Mannhart J, Millis A J, Morpurgo A F, Natelson D and Triscone J M 2006 Rev. Mod. Phys. 78 1185
[83] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, SanchezYamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80
[84] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[85] Rhodes D A, Jindal A, Yuan N F Q, Jung Y, Antony A, Wang H, Kim B, Chiu Y c, Taniguchi T, Watanabe K, Barmak K, Balicas L, Dean C R, Qian X, Fu L, Pasupathy A N and Hone J 2021 Nano Lett. 21 2505
[86] Zhai B, Li B, Wen Y, Wu F and He J 2022 Phys. Rev. B 106 L140505
[87] Qin B, Ma C, Guo Q, Li X, Wei W, Ma C, Wang Q, Liu F, Zhao M, Xue G, Qi J, Wu M, Hong H, Du L, Zhao Q, Gao P, Wang X, Wang E, Zhang G, Liu C and Liu K 2024 Science 385 99
[88] Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forró L, Shan J and Mak K F 2016 Nat. Phys. 12 139
[89] Xi X, Berger H, Forró L, Shan J and Mak K F 2016 Phys. Rev. Lett. 117 106801
[90] Liu X, Pyatakov A P and Ren W 2020 Phys. Rev. Lett. 125 247601
[91] Liu K, Ma X, Xu S, Li Y and Zhao M 2023 npj Comput. Mater. 9 16
[92] Xun W, Wu C, Sun H, Zhang W, Wu Y Z and Li P 2024 Nano Lett. 24 3541
[93] Zhang T, Liang Y, Xu X, Huang B, Dai Y and Ma Y 2021 Phys. Rev. B 103 165420
[94] Garcia V, Bibes M, Bocher L, Valencia S, Kronast F, Crassous A, Moya X, Enouz-Vedrenne S, Gloter A, Imhoff D, Deranlot C, Mathur N D, Fusil S, Bouzehouane K and Barthélémy A 2010 Science 327 1106
[95] Chen X F, Ding X K, Gou G Y and Zeng X C 2024 Nano Lett. 24 3089
[96] Jafari H, Barts E, Przybysz P, Tenzin K, Kowalczyk P J, Dabrowski P and Sławińska J 2024 Phys. Rev. Mater. 8 024005
[97] Meier D and Selbach S M 2022 Nat. Rev. Mater. 7 157
[1] Optimal parameter space for stabilizing the ferroelectric phase of Hf0.5Zr0.5O2 thin films under strain and electric fields
Lvjin Wang(王侣锦), Cong Wang(王聪), Linwei Zhou(周霖蔚), Xieyu Zhou(周谐宇), Yuhao Pan(潘宇浩), Xing Wu(吴幸), and Wei Ji(季威). Chin. Phys. B, 2024, 33(7): 076803.
[2] BaTiO3/p-GaN/Au self-driven UV photodetector with bipolar photocurrent controlled by ferroelectric polarization
Wushuang Han(韩无双), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Yongxue Zhu(朱勇学), Zhen Cheng(程祯), Xing Chen(陈星), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2024, 33(4): 047701.
[3] Recent progress on two-dimensional ferroelectrics: Material systems and device applications
Zhiwei Fan(范芷薇), Jingyuan Qu(渠靖媛), Tao Wang(王涛), Yan Wen(温滟), Ziwen An(安子文), Qitao Jiang(姜琦涛), Wuhong Xue(薛武红), Peng Zhou(周鹏), and Xiaohong Xu(许小红). Chin. Phys. B, 2023, 32(12): 128508.
[4] Ferroelectric domain wall memory
Yiming Li(李一鸣), Jie Sun(孙杰), and Anquan Jiang(江安全). Chin. Phys. B, 2023, 32(12): 128504.
[5] Ferroelectricity of pristine Hf0.5Zr0.5O2 films fabricated by atomic layer deposition
Luqiu Chen(陈璐秋), Xiaoxu Zhang(张晓旭), Guangdi Feng(冯光迪), Yifei Liu(刘逸飞), Shenglan Hao(郝胜兰), Qiuxiang Zhu(朱秋香), Xiaoyu Feng(冯晓钰), Ke Qu(屈可), Zhenzhong Yang(杨振中), Yuanshen Qi(祁原深), Yachin Ivry, Brahim Dkhil, Bobo Tian(田博博), Junhao Chu(褚君浩), and Chungang Duan(段纯刚). Chin. Phys. B, 2023, 32(10): 108102.
[6] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[7] Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius
Qiong Wu(吴琼), Lei Zhao(赵雷), Xinghao Chen(陈兴豪), and Shifeng Zhao(赵世峰). Chin. Phys. B, 2022, 31(9): 097701.
[8] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[9] Insight into influence of thermodynamic coefficients on transient negative capacitance in Zr-doped HfO2 ferroelectric capacitors
Yuan-Yuan Zhang(张元元), Xiao-Qing Sun(孙晓清), Jun-Shuai Chai(柴俊帅), Hao Xu(徐昊), Xue-Li Ma(马雪丽), Jin-Juan Xiang(项金娟), Kai Han(韩锴), Xiao-Lei Wang(王晓磊), and Wen-Wu Wang(王文武). Chin. Phys. B, 2021, 30(12): 127701.
[10] Effects of Ni substitution on multiferroic properties in Bi5FeTi3O15 ceramics
Hui Sun(孙慧), Jiaying Niu(钮佳颖), Haiying Cheng(成海英), Yuxi Lu(卢玉溪), Zirou Xu(徐紫柔), Lei Zhang(张磊), and Xiaobing Chen(陈小兵). Chin. Phys. B, 2021, 30(10): 107701.
[11] Topology and ferroelectricity in group-V monolayers
Mutee Ur Rehman, Chenqiang Hua(华陈强), Yunhao Lu(陆赟豪). Chin. Phys. B, 2020, 29(5): 057304.
[12] Magnetoelectric effects in multiferroic Y-type hexaferrites Ba0.3Sr1.7CoxMg2-xFe12O22
Yanfen Chang(畅艳芬), Kun Zhai(翟昆), Young Sun(孙阳). Chin. Phys. B, 2020, 29(3): 037701.
[13] Unusual tunability of multiferroicity in GdMn2O5 by electric field poling far above multiferroic ordering point
Xiang Li(李翔), Shuhan Zheng(郑书翰), Liman Tian(田礼漫), Rui Shi(石锐), Meifeng Liu(刘美风), Yunlong Xie(谢云龙), Lun Yang(杨伦), Nian Zhao(赵念), Lin Lin(林林), Zhibo Yan(颜志波), Xiuzhang Wang(王秀章), Junming Liu(刘俊明). Chin. Phys. B, 2019, 28(2): 027502.
[14] Epitaxially strained SnTiO3 at finite temperatures
Dawei Wang(王大威), Laijun Liu(刘来君), Jia Liu(刘佳), Nan Zhang(张楠), Xiaoyong Wei(魏晓勇). Chin. Phys. B, 2018, 27(12): 127702.
[15] Electro-optical properties and (E, T) phase diagram of fluorinated chiral smectic liquid crystals
R Zgueb, H Dhaouadi, T Othman. Chin. Phys. B, 2018, 27(10): 107701.
No Suggested Reading articles found!