Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 126103    DOI: 10.1088/1674-1056/ad925c
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Ab initio study of phase stability, elastic anisotropy, and minimum thermal conductivity of MnB2 in different crystal structures

Xiao-Fan Wang(王小凡)1, Yi-Xian Wang(王乙先)1,†, Zhuo Wang(王卓)1, Yu-Xuan Zhang(张宇轩)1, and Jian-Bing Gu(顾建兵)2
1 College of Science, Xi'an University of Science and Technology, Xi'an 710054, China;
2 School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
Abstract  The phase stability, elastic anisotropy, and minimum thermal conductivity of MnB$_{2}$ in different crystal structures have been investigated by first-principles calculations based on density functional theory. The results found that $P$6$_{3}/mmc$ (hP6-MnB$_{2})$, $P6/mmm$ (hP3-MnB$_{2})$, Pmmn (oP6-MnB$_{2})$, $R\bar{{3}}m$(hR3-MnB$_{2})$, Pnma (oP12-MnB$_{2})$, and Immm (oI18-MnB$_{2})$ all exhibit mechanical and dynamic stability under environmental conditions, and the sequence of phase stability was hP6 > hR3 > oP6 > oI18 > oP12 >hP3. In addition, Vickers hardness calculations indicated that hP6, hR3, oP6, and oI18 of MnB$_{2}$ have potential as hard materials, while hP3 and oP12 are not suitable as hard materials. Moreover, the elastic anisotropy of different MnB$_{2 }$ phases were also comprehensively investigated. It is found that the anisotropic order of bulk modulus is oP12 > hP3 > hP6 > hR3 > oI18 > oP6, while that of Young's modulus is oP12 > hR3 > hP6 > oP6 > hP3 > oI18. Furthermore, the minimum thermal conductivity of different MnB$_{2}$ phases was evaluated by means of Clarke's and Cahill's models. The results suggested that these MnB$_{2}$ diborides are all not suitable as thermal barrier coating materials.
Keywords:  transition metal boride      mechanical properties      density functional theory  
Received:  26 June 2024      Revised:  11 October 2024      Accepted manuscript online:  14 November 2024
PACS:  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  61.41.+e (Polymers, elastomers, and plastics)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
Fund: Project supported by the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2024JCYBQN-0044), the National Natural Science Foundation of China (Grant No. 11904282), and the Doctoral Scientific Research Foundation of Xi’an University of Science and Technology (Grant No. 2018QDJ029).
Corresponding Authors:  Yi-Xian Wang     E-mail:  lsdwyx@163.com

Cite this article: 

Xiao-Fan Wang(王小凡), Yi-Xian Wang(王乙先), Zhuo Wang(王卓), Yu-Xuan Zhang(张宇轩), and Jian-Bing Gu(顾建兵) Ab initio study of phase stability, elastic anisotropy, and minimum thermal conductivity of MnB2 in different crystal structures 2024 Chin. Phys. B 33 126103

[1] Wang Y X, Yan Z X and Liu W 2020 RSC. Adv. 10 37142
[2] Lazar P, Chen X Q and Podloucky R 2009 Phys. Rev. B 80 012103
[3] Liang Y and Zhang B 2007 Phys. Rev. B 76 132101
[4] Vogt T, Schneider G, Hriljac J A, Yang G and Abell J S 2001 Phys. Rev. B 63 220505
[5] Wang Z, Kuang X, Yu G, Zhao P, Zhong H and Yuan S 2021 Phys. Rev. B 104 155110
[6] Zhong M M, Huang C and Tian C L 2017 Int. J. Mod. Phys. B 31 1750131
[7] Steinki N, Winter J L and Schulze Grachtrup D 2017 J. Alloys Compd. 695 2149
[8] Pei C Y and Zhang J F 2022 Sci. China Phys. Mech. Astron. 65 287412
[9] Li P, Ma L, Peng M, Shu B and Duan Y 2018 J. Alloys Compd. 747 905
[10] Liang Y, Wu Z and Wang S 2015 AIP Adv. 5 117208
[11] Gou H, Steinle-Neumann G, Bykova E, Nakajima Y, Miyajima N, Li Y, Ovsyannikov S V, Dubrovinsky L S and Dubrovinskaia N 2013 Appl. Phys. Lett. 102 061906
[12] Xu C, Bao K, Ma S, Cui T, Ma Y, Wei S, Shao Z, Xiao X, Feng X and Cui T 2017 RSC Adv. 7 10559
[13] Niu H, Chen X Q, Ren W, Zhu Q, Oganov A R, Li D and Li Y 2014 Phys. Chem. Chem. Phys. 16 15866
[14] Liang Y,Wu Z, Yuan X, ZhangWand Zhang P 2016 Nanoscale 8 1055
[15] Mohn P and Pettifor D G 1988 J. Phys. C: Solid State Phys. 21 2829
[16] Ma S, Bao K, Tao Q, Zhu P, Ma T, Liu B, Liu Y and Cui T 2017 Sci. Rep. 7 43759
[17] Ishii T, Shimada M and Koizumi M 1983 J. Appl. Phys. 54 6907
[18] Qu Z Y, Han F J and Yu T 2020 Phys. Rev. B 102 075431
[19] Gou H, Tsirlin A A, Bykova E, Abakumov A M, Van Tendeloo G, Richter A, Ovsyannikov S V, Kurnosov A V, Trots D M, Konôpková Z, Liermann H P, Dubrovinsky L and Dubrovinskaia N 2014 Phys. Rev. B 89 064108
[20] Sun Y, Duan Y, Li X, Xu X, Yao X, Liu S, Yin H, Wang B, Liu Y and Zhang X 2023 Int. J. Quantum Chem. 123 e27117
[21] Liang Y, Xu M and Qu Z 2021 J. Mater. Chem. C 9 8258
[22] Cely A, Ter Genius L E and Lundstrom T 1978 J. Less. Common. Met. 61 193
[23] Asokamani R S, Vajeeston P R and Ravindra P 1970 Acta. Chem. Scand. 24 1791
[24] Aydin S and Simsek M 2009 Phys. Rev. B 80 134107
[25] Wang B, Li X,Wang Y X and Tu Y F 2011 J. Phys. Chem. C 115 21429
[26] Fan J, Bao K, Jin X, Meng X, Duan D, Liu B and Cui T 2012 J. Mater. Chem. 22 17630
[27] Gao B, Gao P, Lu S, Lv J, Wang Y and Ma Y 2019 Sci. Bull. 64 301
[28] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
[29] Wang Y X, Wu H, Xie W N and Wang X F 2024 J. Appl. Phys. 135 205901
[30] Wang Y X, Yan Z X, Liu W and Zhou G L 2019 J. Appl. Phys. 126 135901
[31] Wang X F,Wang Y X,Wu H and XieWN 2024 Appl. Phys. A 130 414
[32] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[33] Payne M C, Teter M P and Allan D C 1992 Rev. Mod. Phys. 64 1045
[34] Milman V and Winkler B 2000 Int. J. Quantum Chem. 77 895
[35] Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[36] Alfè D 2009 Computer Phys. Commun. 180 2622
[37] Xie W N, Wang Y X, Y Z X and Liu W 2023 Eur. Phys. J. B 96 64
[38] Wang Y X, Yan Z X and Liu W 2019 Philos. Mag. 99 2321
[39] epkowski S P 2020 Phys. Rev. B 102 134116
[40] Luo F, Fu M, Ji G F and Chen X R 2010 Chin. Phys. B 19 027101
[41] Wu Z, Zhao E, Xiang H, Hao X, Liu X and Meng J 2007 Phys. Rev. B 76 054115
[42] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[43] Beckstein O, Klepeis J E, Hart G LWand Pankratov O 2001 Phys. Rev. B 63 134112
[44] Chen X Q, Niu H, Li D and Li Y 2011 Intermetallics 19 1275
[45] Lech A T, Turner C L, Mohammadi R, Tolbert S H and Kaner R B 2015 Proc. Natl. Acad. Sci. USA 112 3223
[46] Hill R 1952 Proc. Phys. Soc. A 65 349
[47] Pugh S F 1954 XCII. 1954 Phil. Mag. 45 823
[48] Ivanovskii A L 2012 Prog. Mater. Sci. 57 184
[49] Gilman J J 2009 Chemical Hardness (John Wiley & Sons, Inc.) pp. 189-196
[50] Teter Daid M 1998 MRS Bull. 23 22
[51] Levine J B, Tolbert S H and Kaner R B 2009 Adv. Funct. Mater. 19 3519
[52] Ranganathan S I and Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504
[53] Vahldiek FWand Mersol S A 1968 held on June 13-15, 1967, in Dayton Ohio. Sponsored by the Ceramics and Branch of the air Force Materials Laboratory, United States Air Force (Boston, MA: Springer US)
[54] Ravindran P, Fast L, Korzhavyi P A, Johansson B,Wills J and Eriksson O 1998 J. Appl. Phys. 84 4891
[55] Ma Y, Zhang X, Ma H, Guo H and Wang F 2022 Solid State Commun. 353 114869
[56] Qu D, Li C, Bao L, Kong Z and Duan Y 2020 J. Phys. Chem. Solids 138 109253
[57] Anderson O L 1963 J. Phys. Chem. Solids 24 909
[58] Jin Y Y, Zhang J Q, Ling S, Wang Y Q, Li S, Kuang F G, Wu Z Y and Zhang C Z 2022 Chin. Phys. B 31 116104
[59] Cheng Y, Fan Z, Zhang T, Nomura M, Volz S, Zhu G, Li B and Xiong S 2023 Mater. Today Phys. 35 101093
[60] Clarke D R 2003 Surf. Coat. Tech. 163 67
[61] David G, Cahill and S 1992 Phys. Rev. B 46 6131
[62] Liu Y, Cooper V R, Wang B, Xiang H, Li Q, Gao Y, Yang J, Zhou Y and Liu B 2019 Mater. Res. Lett. 7 145
[1] Stable structures and properties of Ru2Al5
Jing Luo(罗晶), Meiguang Zhang(张美光), Xiaofei Jia(贾晓菲), and Qun Wei(魏群). Chin. Phys. B, 2025, 34(1): 016301.
[2] Half-metallic ferromagnetic Weyl fermions related to dynamic correlations in the zinc-blende compound VAs
Xianyong Ding(丁献勇), Haoran Wei(魏皓然), Ruixiang Zhu(朱瑞翔), Xiaoliang Xiao(肖晓亮), Xiaozhi Wu(吴小志), and Rui Wang(王锐). Chin. Phys. B, 2024, 33(9): 097103.
[3] Phase structure evolution and its effect on magnetic and mechanical properties of B-doped Sm2Co17-type magnets with high Fe content
Yao-Wen Li(李耀文), Zhuang Liu(刘壮), Hai-Chen Wu(吴海辰), Fang Wang(王芳), Chao-Qun Zhu(竺超群), Dong-Liang Tan(谭栋梁), Yu Liu(刘宇), Yang Yang(羊杨), Ming-Xiao Zhang(张明晓), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2024, 33(9): 097504.
[4] Comparative study of nudged elastic band and molecular dynamics methods for diffusion kinetics in solid-state electrolytes
Aming Lin(林啊鸣), Jing Shi(石晶), Su-Huai Wei(魏苏淮), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2024, 33(8): 086601.
[5] Rational molecular engineering towards efficient heterojunction solar cells based on organic molecular acceptors
Kaiyan Zhang(张凯彦), Peng Song(宋朋), Fengcai Ma(马凤才), and Yuanzuo Li(李源作). Chin. Phys. B, 2024, 33(6): 068402.
[6] Plasmon-induced nonlinear response on gold nanoclusters
Yuhui Song(宋玉慧), Yifei Cao(曹逸飞), Sichen Huang(黄思晨), Kaichao Li(李凯超), Ruhai Du(杜如海), Lei Yan(严蕾), Zhengkun Fu(付正坤), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(4): 044204.
[7] Local thermal conductivity of inhomogeneous nano-fluidic films:A density functional theory perspective
Zongli Sun(孙宗利), Yanshuang Kang(康艳霜), and Yanmei Kang(康艳梅). Chin. Phys. B, 2024, 33(4): 046503.
[8] Microscopic mechanism of plasmon-mediated photocatalytic H2 splitting on Ag-Au alloy chain
Yuhui Song(宋玉慧), Yirui Lu(芦一瑞), Axin Guo(郭阿鑫), Yifei Cao(曹逸飞), Jinping Li(李金萍), Zhengkun Fu(付正坤), Lei Yan(严蕾), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(3): 033101.
[9] Structure, electronic, and nonlinear optical properties of superalkaline M3O (M = Li, Na) doped cyclo[18]carbon
Xiao-Dong Liu(刘晓东), Qi-Liang Lu(卢其亮), and Qi-Quan Luo(罗其全). Chin. Phys. B, 2024, 33(2): 023601.
[10] Databases of 2D material-substrate interfaces and 2D charged building blocks
Jun Deng(邓俊), Jinbo Pan(潘金波), and Shixuan Du(杜世萱). Chin. Phys. B, 2024, 33(2): 026101.
[11] Screening A-site ordered quadruple perovskites for alkaline hydrogen evolution reaction via unifying electronic configuration descriptor
Ning Sun(孙宁), Wenbo Li(李文博), Yang Qin(秦杨), Zhichuan Zheng(郑智钏), Bowen Zhang(张博文), Xiangjiang Dong(董祥江), Peng Wei(魏鹏), Yixiao Zhang(张艺潇), Xian He(何贤), Xinyu Xie(谢新煜), Kai Huang(黄凯), Lailei Wu(吴来磊), Ming Lei(雷鸣), Huiyang Gou(缑慧阳), and Runze Yu(于润泽). Chin. Phys. B, 2024, 33(12): 128101.
[12] Optimized numerical density functional theory calculation of rotationally symmetric jellium model systems
Guangdi Zhang(张广迪), Li Mao(毛力), and Hongxing Xu(徐红星). Chin. Phys. B, 2024, 33(10): 107101.
[13] Charge self-consistent dynamical mean field theory calculations in combination with linear combination of numerical atomic orbitals framework based density functional theory
Xin Qu(瞿鑫), Peng Xu(许鹏), Zhiyong Liu(刘志勇), Jintao Wang(王金涛), Fei Wang(王飞), Wei Huang(黄威), Zhongxin Li(李忠星), Weichang Xu(徐卫昌), and Xinguo Ren(任新国). Chin. Phys. B, 2024, 33(10): 107106.
[14] Epitaxial growth of ultrathin gallium films on Cd(0001)
Zuo Li(李佐), Mingxia Shi(石明霞), Gang Yao(姚钢), Minlong Tao(陶敏龙), and Junzhong Wang(王俊忠). Chin. Phys. B, 2024, 33(1): 018101.
[15] Physical mechanism of oxygen diffusion in the formation of Ga2O3 Ohmic contacts
Su-Yu Xu(徐宿雨), Miao Yu(于淼), Dong-Yang Yuan(袁东阳), Bo Peng(彭博), Lei Yuan(元磊), Yu-Ming Zhang(张玉明), and Ren-Xu Jia(贾仁需). Chin. Phys. B, 2024, 33(1): 017302.
No Suggested Reading articles found!