Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 120704    DOI: 10.1088/1674-1056/ad8ece
TOPICAL REVIEW — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS Prev   Next  

Combining electron microscopy with atomic-scale calculations—A personal perspective

Sokrates T. Pantelides
Department of Physics and Astronomy and Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
Abstract  I had the privilege and the pleasure to work closely with Stephen J. Pennycook for about twenty years, having a group of post-docs and Vanderbilt-University graduate students embedded in his electron microscopy group at Oak Ridge National Laboratory, spending on average a day per week there. We combined atomic-resolution imaging of materials, electron-energy-loss spectroscopy, and density-functional-theory calculations to explore and elucidate diverse materials phenomena, often resolving long-standing issues. This paper is a personal perspective of that journey, highlighting a few examples to illustrate the power of combining theory and microscopy and closing with an assessment of future prospects.
Keywords:  electron microscopy      EELS      density-functional-theory calculations  
Received:  14 October 2024      Revised:  14 October 2024      Accepted manuscript online:  05 November 2024
PACS:  07.78.+s (Electron, positron, and ion microscopes; electron diffractometers)  
  61.72.Bb (Theories and models of crystal defects)  
  61.46.Hk (Nanocrystals)  
Corresponding Authors:  Sokrates T. Pantelides     E-mail:  pantelides@vanderbilt.edu

Cite this article: 

Sokrates T. Pantelides Combining electron microscopy with atomic-scale calculations—A personal perspective 2024 Chin. Phys. B 33 120704

[1] Maiti A, Chisholm M F, Pennycook S J and Pantelides S T 1996 Phys. Rev. Lett. 77 1306
[2] Chisholm M F, Maiti A, Pennycook S J and Pantelides S T 1998 Phys. Rev. Lett. 81 132
[3] Yan Y, Chisholm M F, Duscher G, Maiti A, Pennycook S J and Pantelides S T 1998 Phys. Rev. Lett. 81 3675
[4] Klie R, Buban J P, Varela M, Franceschetti A, Jooss C, Zhu Y, Browning N D, Pantelides S T and Pennycook S J 2005 Nature 435 475
[5] Wang S, Borisevich A Y, Rashkeev S N, Glazoff M V, Sohlberg K, Pennycook S J and Pantelides S T 2004 Nat. Mater. 3 143
[6] Biškup N, Salafranca J, Mehta V, Oxley M P, Suzuki Y, Pennycook S J, Pantelides S T and Varela M 2014 Phys. Rev. Lett. 112 087202
[7] Pennycook T J, McBride J R, Rosenthal S J, Pennycook S J and Pantelides S T 2012 Nano Lett. 12 3038
[8] Lee J, Zhou W, Pennycook S J, Idrobo J C and Pantelides S T 2013 Nat. Commun. 4 1650
[9] Lee J, Yang Z, Zhou W, Pennycook S J, Pantelides S T and Chisholm M F 2014 Proc. Natl. Acad. Sci. USA 111 7522
[10] Lin J, Cretu O, Zhou W, Suenaga K, Prasai D, Bolotin K I, Cuong N T, Otani M, Okada S, Lupini A R, Idrobo J C, Caudel D, Burger A, Ghimire N J, Yan J, Mandrus D G, Pennycook S J and Pantelides S T 2014 Nat. Nanotechnol. 9 436
[11] Zheng Q, Feng T, Hachtel J A, Ishikawa R, Cheng Y, Daemen L, Xing J, Idrobo J C, Yan J, Shibata N, Ikuhara Y, Sales B C, Pantelides S T and Chi M 2021 Sci. Adv. 7 eabe6819
[12] Yang Q, Wang Y P, Shi X L, Li X X, Zhao E, Chen Z G, Zou J, Leng K, Cai Y, Zhu L, Pantelides S T and Lin J 2024 Nat. Commun. 15 6074
[13] Hoglund E R, Bao D L, O’Hara A, Makarem S, Piontkowski Z T, Matson J R, Yadav A K, Haislmaier R C, Engel-Herbert R, Ihlefeld J F, Ravichandran J, Ramesh R, Caldwell J D, Beechem T E, Tomlo J A, Hachtel J A, Pantelides S T, Hopkins P E and Howe J M 2022 Nature 601 556
[14] Hoglund E, Bao D L, O’Hara A, Pfeifer T, Hoque Md S B, Makarem S, Howe J M, Pantelides S T, Hopkins P E and Hatchel J A 2023 Adv. Mater. 35 2208920
[15] Hoglund E R, Walker H A, Hussain M K, Bao D L, Ni H, Mamun A, Baxter J, Caldwell J D, Khan A, Pantelides S T, Hopkins P E and Hachtel J A 2024 Adv. Mater. 36 2402925
[16] Xu M, Bao D L, Li A, Gao M, Meng D, Li A, Du S, Su G, Pennycook S J, Pantelides S T and Zhou W 2023 Nat. Mater. 22 612
[17] Bao D L, Xu M, Li A W, Su G, Zhou W and Pantelides S T 2024 Nanosc. Horiz. 9 248
[18] Hoglund E R, Walker H A, Hussain Md K, Bao D L, Ni H, Mamun A, Baxter J, Caldwell J D, Khan A, Pantelides S T, Hopkins P E and Hachtel J A 2024 Adv. Mater. 36 2402925
[19] Walker H A, Hoglund E R, Bao D L, Hussain Md K, Ni H, Mamun A, Baxter J, Khan A, Caldwell J D, Hopkins P E, Hachtel J A and Pantelides S T 2024 Microsc. Microanal. 30 455
[20] Zeiger P M and Rusz J 2020 Phys. Rev. Lett. 124 025501
[21] Rossi A W, Bourgeois M R, Walton C and Masiello D 2024 Nano Lett. 24 7748
[1] Visualizing extended defects at the atomic level in a Bi2Sr2CaCu2O8+δ superconducting wire
Kejun Hu(胡柯钧), Shuai Wang(王帅), Boyu Li(李泊玉), Ying Liu(刘影), Binghui Ge(葛炳辉), and Dongsheng Song(宋东升). Chin. Phys. B, 2024, 33(9): 096101.
[2] Probing nickelate superconductors at atomic scale: A STEM review
Yihan Lei(雷一涵), Yanghe Wang(王扬河), Jiahao Song(宋家豪), Jinxin Ge(葛锦昕), Dirui Wu(伍迪睿), Yingli Zhang(张英利), and Changjian Li(黎长建). Chin. Phys. B, 2024, 33(9): 096801.
[3] Revealing the microstructures of metal halide perovskite thin films via advanced transmission electron microscopy
Yeming Xian(冼业铭), Xiaoming Wang(王晓明), and Yanfa Yan(鄢炎发). Chin. Phys. B, 2024, 33(9): 096803.
[4] Atomically self-healing of structural defects in monolayer WSe2
Kangshu Li(李康舒), Junxian Li(李俊贤), Xiaocang Han(韩小藏), Wu Zhou(周武), and Xiaoxu Zhao(赵晓续). Chin. Phys. B, 2024, 33(9): 096804.
[5] Multiphase cooperation for multilevel strain accommodation in a single-crystalline BiFeO3 thin film
Wooseon Choi, Bumsu Park, Jaejin Hwang, Gyeongtak Han, Sang-Hyeok Yang, Hyeon Jun Lee, Sung Su Lee, Ji Young Jo, Albina Y. Borisevich, Hu Young Jeong, Sang Ho Oh, Jaekwang Lee, and Young-Min Kim. Chin. Phys. B, 2024, 33(9): 096805.
[6] Multidimensional images and aberrations in STEM
Eric R. Hoglund and Andrew R. Lupini. Chin. Phys. B, 2024, 33(9): 096807.
[7] Symmetry quantification and segmentation in STEM imaging through Zernike moments
Jiadong Dan, Cheng Zhang, Xiaoxu Zhao(赵晓续), and N. Duane Loh. Chin. Phys. B, 2024, 33(8): 086803.
[8] Cryo-EM combined with image deconvolution to determine ZIF-8 crystal structure
Kang Wu(吴抗), Baisong Yang(杨柏松), Wenhua Xue(薛文华), Dapeng Sun(孙大鹏), Binghui Ge(葛炳辉), and Yumei Wang(王玉梅). Chin. Phys. B, 2024, 33(7): 076802.
[9] Nanoscale cathodoluminescence spectroscopy probing the nitride quantum wells in an electron microscope
Zhetong Liu(刘哲彤), Bingyao Liu(刘秉尧), Dongdong Liang(梁冬冬), Xiaomei Li(李晓梅), Xiaomin Li(李晓敏), Li Chen(陈莉), Rui Zhu(朱瑞), Jun Xu(徐军), Tongbo Wei(魏同波), Xuedong Bai(白雪冬), and Peng Gao(高鹏). Chin. Phys. B, 2024, 33(3): 038502.
[10] Ultrafast photoemission electron microscopy: A multidimensional probe of nonequilibrium physics
Yanan Dai(戴亚南). Chin. Phys. B, 2024, 33(3): 038703.
[11] Physics through the microscope
Stephen J. Pennycook, Ryo Ishikawa, Haijun Wu(武海军), Xiaoxu Zhao(赵晓续), Changjian Li(黎长建), Duane Loh, Jiadong Dan, and Wu Zhou(周武). Chin. Phys. B, 2024, 33(11): 116801.
[12] Making the link between ADF and 4D STEM: Resolution, transfer and coherence
Peter D. Nellist and Timothy J. Pennycook. Chin. Phys. B, 2024, 33(11): 116803.
[13] Capturing the non-equilibrium state in light—matter—free-electron interactions through ultrafast transmission electron microscopy
Wentao Wang(汪文韬), Shuaishuai Sun(孙帅帅), Jun Li(李俊), Dingguo Zheng(郑丁国), Siyuan Huang(黄思远), Huanfang Tian(田焕芳), Huaixin Yang(杨槐馨), and Jianqi Li(李建奇). Chin. Phys. B, 2024, 33(1): 010701.
[14] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[15] Room-temperature creation and manipulation of skyrmions in MgO/FeNiB/Mo multilayers
Wen-Hui Liang(梁文会), Jian Su(苏鉴), Yu-Tong Wang(王雨桐), Ying Zhang(张颖), Feng-Xia Hu(胡凤霞), and Jian-Wang Cai(蔡建旺). Chin. Phys. B, 2023, 32(12): 127504.
No Suggested Reading articles found!