PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Suppression of the Kelvin-Helmholtz instability by coating in the double-cone ignition scheme |
Yuan-Kai Xie(谢元凯)1,2, Cheng-Long Zhang(张成龙)2, Yi-Zhen Cheng(程翊真)1,2, and Ying-Jun Li(李英骏)2,† |
1 School of Science, China University of Mining and Technology, Beijing 100083, China; 2 State Key Laboratory for Tunnel Engineering, China University of Mining and Technology, Beijing 100083, China |
|
|
Abstract In order to address the issue of gold mixing caused by the Kelvin-Helmholtz instability (KHI) in the double-cone ignition (DCI) scheme, we investigate the growth rate of the KHI at the bi-interface of the DCI scheme after applying a coating. This is done by solving the hydrodynamic equations for an ideal incompressible fluid using linear theory. Ultimately, it is discovered that applying a coating with a thickness slightly above $h=0.5(\lambda+10 μm)$ and a density somewhat lower than that of the target layer can effectively reduce the growth rate of interfacial KHI. This work provides theoretical references for studying the bi-interface KHI in the DCI scheme.
|
Received: 30 July 2024
Revised: 09 September 2024
Accepted manuscript online: 10 October 2024
|
PACS:
|
52.57.-z
|
(Laser inertial confinement)
|
|
52.30.Ex
|
(Two-fluid and multi-fluid plasmas)
|
|
47.20.Ft
|
(Instability of shear flows (e.g., Kelvin-Helmholtz))
|
|
Fund: Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA 25051000). |
Corresponding Authors:
Ying-Jun Li
E-mail: lyj@aphy.iphy.ac.cn
|
Cite this article:
Yuan-Kai Xie(谢元凯), Cheng-Long Zhang(张成龙), Yi-Zhen Cheng(程翊真), and Ying-Jun Li(李英骏) Suppression of the Kelvin-Helmholtz instability by coating in the double-cone ignition scheme 2024 Chin. Phys. B 33 125203
|
[1] Lord Kelvin W T 1871 Phil. Mag. 42 362 [2] Helmholtz H V 1868 Phil. Mag. 36 337 [3] Chandrasekhar S 1961 Hydrodynamic and Hydromagnetic Stability (London: Oxford University Press) pp. 480-514 [4] Sen A K 1964 Phys. Fluids 7 1293 [5] Michael D H 1955 Math. Proc. Camb. Phil. Soc. 51 528 [6] Sen A K 1963 Phys. Fluids 6 1154 [7] Zhang J, Wang W M, Yang X H, Wu D, Ma Y Y, Jiao J L, Zhang Z, Wu F Y, Yuan X H, Li Y T and Zhu J Q 2020 Phil. Trans. R. Soc. A 378 20200015 [8] Maschke A W 1975 IEEE Trans. Nucl. Sci. 22 1825 [9] Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D and Mason R J 1994 Phys. Plasmas 1 1626 [10] Kodama R, Shiraga H, Shigemori K, et al. 2002 Nature 418 933 [11] Li J, Davies J R, Ma T, Mori W B, Ren C, Solodov A A, Theobald W and Tonge J 2013 Phys. Plasmas 20 052706 [12] Zhang J, Zhang Z and Wang W M (CN Patent) 111681783 A [2020- 09-18] [13] Henderson D B, McCrory R L and Morse R L 1974 Phys. Rev. Lett. 33 205 [14] Hammel B A, Kilkenny J D, Munro D, Remington B A, Kornblum H N, Perry T S, Phillion D W and Wallace R J 1994 Phys. Plasmas 1 1662 [15] Betti R, Goncharov V N, McCrory R L and Verdon C P 1998 Phys. Plasmas 5 1446 [16] Clark T R and Milchberg H M 1998 Phys. Rev. E 57 3417 [17] Yang H, Zhang J and Li Y 2002 Phys. Rev. E 66 016406 [18] Lindl J D, Amendt P, Berger R T, Glendinning S G, GlenzerS H, Haan S W, KauffmanR L, Landen O L and Suter L J 2004 Phys. Plasmas 11 339 [19] Boozer A H 2005 Rev. Mod. Phys. 76 1071 [20] He X T and Zhang W Y 2007 Eur. Phys. J. D 44 227 [21] Wang L F, Ye W H, Don W S, Sheng Z M, Li Y J and He X T 2010 Phys. Plasmas 17 122308 [22] Betti R and Hurricane O A 2016 Nat. Phys. 12 435 [23] Hill D W and Kingham R J 2018 Phys. Rev. E 98 021201 [24] Duchateau G, Hu S X and Pineau A 2019 Phys. Rev. E 100 033201 [25] Zhang S and Hu S X 2020 Phys. Rev. Lett. 125 105001 [26] Frenje J A 2020 Plasma Phys. Control. Fusion 62 023001 [27] Tao T, Zheng G, Jia Q, Yan R and Zheng J 2023 High Power Laser Science and Engineering 11 e41 [28] Zhang Q, Wu F Y, Yang X H, Ma Y Y, Cui Y, Jiang B F and Zhang J 2024 Phys. Plasmas 31 032703 [29] Zhang C L, Zhang Y H, Yuan X H, Zhang Z, Xu M H, Dai Y, Dong Y F, Gu H C, Liu Z D, Zhao X, Li Y T, Li Y J, Zhi J Q and Zhang J 2022 Chin. Phys. B 33 025201 [30] Dai H H, Xu M H, Guo H Y, Li Y J and Zhang J 2022 Chin. Phys. B 31 120401 [31] Li Z, Yang X H, Xu H, Zhang G B, Zeng B, Chen S J, Ma Y Y, Wu F Y and Zhang J 2022 Phys. Plasmas 29 092705 [32] Zhu Z Y, Liu Y X, Li Y J and Zhang J 2022 Chin. Phys. B 31 105202 [33] Fryxell B, Ricker P, Timmes F X, Zingale M, Lamb D Q, MacNeice P, Rosner R, Truran J W and Tufo H 2000 The Astrophysical Journal Supplement Series 131 273 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|