Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 125203    DOI: 10.1088/1674-1056/ad8551
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Suppression of the Kelvin-Helmholtz instability by coating in the double-cone ignition scheme

Yuan-Kai Xie(谢元凯)1,2, Cheng-Long Zhang(张成龙)2, Yi-Zhen Cheng(程翊真)1,2, and Ying-Jun Li(李英骏)2,†
1 School of Science, China University of Mining and Technology, Beijing 100083, China;
2 State Key Laboratory for Tunnel Engineering, China University of Mining and Technology, Beijing 100083, China
Abstract  In order to address the issue of gold mixing caused by the Kelvin-Helmholtz instability (KHI) in the double-cone ignition (DCI) scheme, we investigate the growth rate of the KHI at the bi-interface of the DCI scheme after applying a coating. This is done by solving the hydrodynamic equations for an ideal incompressible fluid using linear theory. Ultimately, it is discovered that applying a coating with a thickness slightly above $h=0.5(\lambda+10 μm)$ and a density somewhat lower than that of the target layer can effectively reduce the growth rate of interfacial KHI. This work provides theoretical references for studying the bi-interface KHI in the DCI scheme.
Keywords:  coating      Kelvin-Helmholtz instability      double-cone ignition scheme      growth rate  
Received:  30 July 2024      Revised:  09 September 2024      Accepted manuscript online:  10 October 2024
PACS:  52.57.-z (Laser inertial confinement)  
  52.30.Ex (Two-fluid and multi-fluid plasmas)  
  47.20.Ft (Instability of shear flows (e.g., Kelvin-Helmholtz))  
Fund: Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA 25051000).
Corresponding Authors:  Ying-Jun Li     E-mail:  lyj@aphy.iphy.ac.cn

Cite this article: 

Yuan-Kai Xie(谢元凯), Cheng-Long Zhang(张成龙), Yi-Zhen Cheng(程翊真), and Ying-Jun Li(李英骏) Suppression of the Kelvin-Helmholtz instability by coating in the double-cone ignition scheme 2024 Chin. Phys. B 33 125203

[1] Lord Kelvin W T 1871 Phil. Mag. 42 362
[2] Helmholtz H V 1868 Phil. Mag. 36 337
[3] Chandrasekhar S 1961 Hydrodynamic and Hydromagnetic Stability (London: Oxford University Press) pp. 480-514
[4] Sen A K 1964 Phys. Fluids 7 1293
[5] Michael D H 1955 Math. Proc. Camb. Phil. Soc. 51 528
[6] Sen A K 1963 Phys. Fluids 6 1154
[7] Zhang J, Wang W M, Yang X H, Wu D, Ma Y Y, Jiao J L, Zhang Z, Wu F Y, Yuan X H, Li Y T and Zhu J Q 2020 Phil. Trans. R. Soc. A 378 20200015
[8] Maschke A W 1975 IEEE Trans. Nucl. Sci. 22 1825
[9] Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D and Mason R J 1994 Phys. Plasmas 1 1626
[10] Kodama R, Shiraga H, Shigemori K, et al. 2002 Nature 418 933
[11] Li J, Davies J R, Ma T, Mori W B, Ren C, Solodov A A, Theobald W and Tonge J 2013 Phys. Plasmas 20 052706
[12] Zhang J, Zhang Z and Wang W M (CN Patent) 111681783 A
[2020- 09-18]
[13] Henderson D B, McCrory R L and Morse R L 1974 Phys. Rev. Lett. 33 205
[14] Hammel B A, Kilkenny J D, Munro D, Remington B A, Kornblum H N, Perry T S, Phillion D W and Wallace R J 1994 Phys. Plasmas 1 1662
[15] Betti R, Goncharov V N, McCrory R L and Verdon C P 1998 Phys. Plasmas 5 1446
[16] Clark T R and Milchberg H M 1998 Phys. Rev. E 57 3417
[17] Yang H, Zhang J and Li Y 2002 Phys. Rev. E 66 016406
[18] Lindl J D, Amendt P, Berger R T, Glendinning S G, GlenzerS H, Haan S W, KauffmanR L, Landen O L and Suter L J 2004 Phys. Plasmas 11 339
[19] Boozer A H 2005 Rev. Mod. Phys. 76 1071
[20] He X T and Zhang W Y 2007 Eur. Phys. J. D 44 227
[21] Wang L F, Ye W H, Don W S, Sheng Z M, Li Y J and He X T 2010 Phys. Plasmas 17 122308
[22] Betti R and Hurricane O A 2016 Nat. Phys. 12 435
[23] Hill D W and Kingham R J 2018 Phys. Rev. E 98 021201
[24] Duchateau G, Hu S X and Pineau A 2019 Phys. Rev. E 100 033201
[25] Zhang S and Hu S X 2020 Phys. Rev. Lett. 125 105001
[26] Frenje J A 2020 Plasma Phys. Control. Fusion 62 023001
[27] Tao T, Zheng G, Jia Q, Yan R and Zheng J 2023 High Power Laser Science and Engineering 11 e41
[28] Zhang Q, Wu F Y, Yang X H, Ma Y Y, Cui Y, Jiang B F and Zhang J 2024 Phys. Plasmas 31 032703
[29] Zhang C L, Zhang Y H, Yuan X H, Zhang Z, Xu M H, Dai Y, Dong Y F, Gu H C, Liu Z D, Zhao X, Li Y T, Li Y J, Zhi J Q and Zhang J 2022 Chin. Phys. B 33 025201
[30] Dai H H, Xu M H, Guo H Y, Li Y J and Zhang J 2022 Chin. Phys. B 31 120401
[31] Li Z, Yang X H, Xu H, Zhang G B, Zeng B, Chen S J, Ma Y Y, Wu F Y and Zhang J 2022 Phys. Plasmas 29 092705
[32] Zhu Z Y, Liu Y X, Li Y J and Zhang J 2022 Chin. Phys. B 31 105202
[33] Fryxell B, Ricker P, Timmes F X, Zingale M, Lamb D Q, MacNeice P, Rosner R, Truran J W and Tufo H 2000 The Astrophysical Journal Supplement Series 131 273
[1] Surface encapsulation of layered oxide cathode material with NiTiO3 for enhanced cycling stability of Na-ion batteries
Zilin Hu(胡紫霖), Bin Tang(唐彬), Ting Lin(林挺), Chu Zhang(张楚), Yaoshen Niu(牛耀申), Yuan Liu(刘渊), Like Gao(高立克), Fei Xie(谢飞), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yongsheng Hu(胡勇胜). Chin. Phys. B, 2024, 33(8): 088202.
[2] A model for fast electron-driven high-density plasma in the double-cone ignition scheme
Zhong-Yi Chen(陈忠义), Kai-Ge Zhao(赵凯歌), and Ying-Jun Li(李英骏). Chin. Phys. B, 2024, 33(11): 115202.
[3] Preparation and cooling performance analysis of double-layer radiative cooling hybrid coatings with TiO2/SiO2/Si3N4 micron particles
Yang-Chun Zhao(赵洋春) and Yong-Min Zhou(周勇敏). Chin. Phys. B, 2023, 32(11): 114401.
[4] High-dispersive mirror for pulse stretcher in femtosecond fiber laser amplification system
Wenjia Yuan(袁文佳), Weidong Shen(沈伟东), Chen Xie(谢辰), Chenying Yang(杨陈楹), and Yueguang Zhang(章岳光). Chin. Phys. B, 2022, 31(8): 087801.
[5] Enhancement of electrochemical performance in lithium-ion battery via tantalum oxide coated nickel-rich cathode materials
Fengling Chen(陈峰岭), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Jing Xie (解婧),Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波). Chin. Phys. B, 2022, 31(5): 058101.
[6] Magnetohydrodynamic Kelvin-Helmholtz instability for finite-thickness fluid layers
Hong-Hao Dai(戴鸿昊), Miao-Hua Xu(徐妙华), Hong-Yu Guo(郭宏宇), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(12): 120401.
[7] Solid-gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect
Xue Zhao(赵雪) and Jin-Wu Jiang(江进武). Chin. Phys. B, 2022, 31(12): 126802.
[8] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
[9] Stabilization of formamidinium lead iodide perovskite precursor solution for blade-coating efficient carbon electrode perovskite solar cells
Yu Zhan(占宇), Weijie Chen(陈炜杰), Fu Yang(杨甫), and Yaowen Li(李耀文). Chin. Phys. B, 2021, 30(8): 088803.
[10] Weakening effect of plastic yielding inception in thin hard coating systems
Xiao Huang(黄啸), Shujun Zhou(周述军), and Tianmin Shao(邵天敏). Chin. Phys. B, 2021, 30(3): 038104.
[11] Multibeam Raman amplification of a finite-duration seed in a short distance
Y G Chen(陈雨谷), Y Chen(陈勇), S X Xie(谢善秀), N Peng(彭娜), J Q Yu(余金清), and C Z Xiao(肖成卓). Chin. Phys. B, 2021, 30(10): 105202.
[12] Tests of the real-time vertical growth rate calculation on EAST
Na-Na Bao(鲍娜娜), Yao Huang(黄耀), Jayson Barr, Zheng-Ping Luo(罗正平), Yue-Hang Wang(汪悦航), Shu-Liang Chen(陈树亮), Bing-Jia Xiao(肖炳甲), David Humphreys. Chin. Phys. B, 2020, 29(6): 065204.
[13] Anti-oxidation characteristics of Cr-coating on surface of Ti-45Al-8.5Nb alloy by plasma surface metallurgy technique
Bing Zhou(周兵), Ya-Rong Wang(王亚榕), Ke Zheng(郑可), Yong Ma(马永), Yong-Sheng Wang(王永胜), Sheng-Wang Yu(于盛旺), and Yu-Cheng Wu(吴玉程). Chin. Phys. B, 2020, 29(12): 126101.
[14] Molecular beam epitaxial growth of high quality InAs/GaAs quantum dots for 1.3-μ quantum dot lasers
Hui-Ming Hao(郝慧明), Xiang-Bin Su(苏向斌), Jing Zhang(张静), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(7): 078104.
[15] Artificial solid electrolyte interphase based on polyacrylonitrile for homogenous and dendrite-free deposition of lithium metal
Hang-Yu Xu(徐航宇), Quan Li(李泉), Hong-Yi Pan(潘弘毅), Ji-Liang Qiu(邱纪亮), Wen-Zhuo Cao(曹文卓), Xi-Qian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2019, 28(7): 078202.
No Suggested Reading articles found!