Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 128101    DOI: 10.1088/1674-1056/ad8074
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Screening A-site ordered quadruple perovskites for alkaline hydrogen evolution reaction via unifying electronic configuration descriptor

Ning Sun(孙宁)1, Wenbo Li(李文博)2,4, Yang Qin(秦杨)1, Zhichuan Zheng(郑智钏)1, Bowen Zhang(张博文)2, Xiangjiang Dong(董祥江)2, Peng Wei(魏鹏)2, Yixiao Zhang(张艺潇)1, Xian He(何贤)1, Xinyu Xie(谢新煜)1, Kai Huang(黄凯)1,†, Lailei Wu(吴来磊)3,4,‡, Ming Lei(雷鸣)1, Huiyang Gou(缑慧阳)2, and Runze Yu(于润泽)2,§
1 State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China;
2 Center for High Pressure Science and Technology Advanced Research, Beijing 100193, China;
3 College of Material Science and Engineering, Liaoning Technical University, Fuxin 123000, China;
4 College of Material Science and Engineering, Yanshan University, Qinhuangdao 066004, China
Abstract  Dynamic adsorption processes of reaction intermediates for alkaline hydrogen evolution (HER) catalysts are still confusing to understand. Here, we report a series of $A$-site ordered quadruple perovskite ruthenium-based electrocatalysts $A$Cu$_{3}$Ru$_{4}$O$_{12}$ ($A ={\rm Na}$, Ca, Nd, and La), with the target sample SrCu$_{3}$Ru$_{4}$O$_{12}$ exhibiting a very low overpotential (46 mV @10 mA$\cdot$ cm$^{-2}$) and excellent catalytic stability with little decays after 48-h durability test. Precise tuning $A$-site cations can change the average valence state of Cu and Ru, thus the plot of HER activity $versus$ the average Ru valence number shows a volcano-type relationship. Density functional theory indicates that the Ru 4d orbitals of SrCu$_{3}$Ru$_{4}$O$_{12}$ possesses the most suitable d-band center position among the five samples, which might be the key parameter to determine the catalytic performance. Our work provides further insight into the discovering advanced, efficient hydrogen evolution catalysts through designing precise descriptor.
Keywords:  Ru-based electrocatalyst      density functional theory      descriptor      quadruple perovskites      hydrogen evolution reaction  
Received:  03 September 2024      Revised:  25 September 2024      Accepted manuscript online:  27 September 2024
PACS:  81.05.Zx (New materials: theory, design, and fabrication)  
  81.16.Hc (Catalytic methods)  
  88.30.em (Electrolytic hydrogen)  
  82.20.-w (Chemical kinetics and dynamics)  
Fund: Project supported financially by the National Key Research and Development Program of China (Grant No. 2023YFA1406000), the National Natural Science Foundation of China (Grant Nos. 22171283 and 12474002), the Fundamental Research Funds for the Central Universities (Grant Nos. 2023ZCJH03 and 2021XD-A041), the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications, China), the Teaching Reform Projects at BUPT (Grant No. 2022CXCYB03), and the BUPT Excellent Ph.D. Students Foundation (Grant No. CX2023108).
Corresponding Authors:  Kai Huang, Lailei Wu, Runze Yu     E-mail:  huang-kai@bupt.edu.cn;wulailei@lntu.edu.cn;runze.yu@hpstar.ac.cn

Cite this article: 

Ning Sun(孙宁), Wenbo Li(李文博), Yang Qin(秦杨), Zhichuan Zheng(郑智钏), Bowen Zhang(张博文), Xiangjiang Dong(董祥江), Peng Wei(魏鹏), Yixiao Zhang(张艺潇), Xian He(何贤), Xinyu Xie(谢新煜), Kai Huang(黄凯), Lailei Wu(吴来磊), Ming Lei(雷鸣), Huiyang Gou(缑慧阳), and Runze Yu(于润泽) Screening A-site ordered quadruple perovskites for alkaline hydrogen evolution reaction via unifying electronic configuration descriptor 2024 Chin. Phys. B 33 128101

[1] Mahmood N, Yao Y, Zhang J W, Pan L, Zhang X W and Zou J J 2018 Adv. Sci. 5 1700464
[2] Guan D Q, Wang B W, Zhang J G, Shi R, Jiao K, Li L, Wang Y, Xie B, Zhang Q W, Yu J, Zhu Y F, Shao Z P and Ni M 2023 Energy Environ. Sci. 16 4926
[3] Bergero C, Gosnell G, Gielen D, Kang S, Bazilian M and Davis S J 2023 Nat. Sustain 6 404
[4] Chen Z G, Gong W B, Wang J, Hou S, Yang G, Zhu C F, Fan X Y, Li Y F, Gao R and Cui Y 2023 Nat. Commun. 14 5363
[5] Deng C, Toe C Y, Li X, Tan J J, Yang H P, Hu Q and He C X 2022 Adv. Energy Mater. 12 2201047
[6] Jiang Y, Fu H, Liang Z, Zhang Q and Du Y P 2023 Chem. Soc. Rev. 53 714
[7] Singh K, Tetteh E B, Lee H Y, Kang T H and Yu J S 2019 ACS Catal. 9 8622
[8] Zhang S, Li J and Wang E 2020 ChemElectroChem 7 4526
[9] Yang Y J, Yu Y H, Li J, Chen Q R, Du Y L, Rao P, Li R S, Jia C M, Kang Z Y, Deng P L and Shen Y J 2021 Nano-Micro Lett. 13 160
[10] Li H J W, Liu K, Fu J W, Chen K J, Yang K X, Lin Y Y, Yang B P, Wang Q Y, Pan H, Cai Z J, Li H M, Cao M Q, Hu J H, Lu Y R, Chan T S, Cortés E, Fratalocchi A and Liu M 2021 Nano Energy 82 105767
[11] Zhang Z, Li P, Wang Q, Feng Q, Tao Y K, Xu J Y, Jiang C, Lu X E, Fan J T, Gu M, Li H and Wang H J 2019 J. Mater. Chem. A 7 2780
[12] Liu W Q, Chen Q W, Shang Y X, Liu F, He R L, Zhang J Y, Li Q L, Chai H, Tan Y Y and Bao S J 2024 Adv. Funct. Mater. 2410325
[13] Luo J Q, Sun Y Q, Liu P L, Zhong S M, Li Y G, Zhang R L, Zhang P, Chi Y L, Xu H, Wei Y C, Song W Y, Li Z X and Liu J 2024 ACS Sustainable Chem. Eng. 12 5319
[14] Wu Z H, Liu L C, Zhao Z Y, Yang C D, Mu S D, Zhou H J, Luo X L, Ma T, Li S and Zhao C S 2023 Small 19 2204738
[15] Zhao J, Urrego-Ortiz R, Liao N, Calle-Vallejo F and Luo J S 2024 Nat. Commun. 15 6391
[16] Lu Q, Zou X H, Bu Y F, Wang Y and Shao Z P 2024 Energy Storage Mater. 68 103341
[17] Huang Z N, Li T T, Li B Y, Dong Q, Smith J, Li S, Xu L, Wang G F, Chi M F and Hu L B 2024 J. Am. Chem. Soc. 146 2167
[18] Ye X B, Song S Z, Li L L, Chang Y C, Qin S J, Liu Z H, Huang Y C, Zhou J, Zhang L J, Dong C L, Pao C W, Lin H J, Chen C T, Hu Z W, Wang J Q and Long Y W 2021 Chem. Mater. 33 9295
[19] Yu R Z 2024 Chin. J. High Press. Phys. 38 010102
[20] Wang X, Liu Z H, Lu D B, Pi M C, Pan Z and Long Y W 2024 Chin. J. High Press. Phys. 38 010101
[21] Lv Y X, Li F Y and Jin C Q 2012 Chin. J. High Press. Phys. 23 31
[22] Zhu Y L, Tahini H A, Hu Z W, Dai J, Chen Y B, Sun H N, Zhou W, Liu M L, Smith S C, Wang H T and Shao Z P 2019 Nat. Commun. 10 149
[23] Dai J, Zhu Y L, Tahini H A, Lin Q, Chen Y, Guan D Q, Zhou C, Hu Z W, Lin H J, Chan T S, Chen C T, Smith S C, Wang H T, Zhou W and Shao Z P 2020 Nat. Commun. 11 5657
[24] Yagi S, Yamada I, Tsukasaki H, Seno A, Murakami M, Fujii H, Chen H R, Umezawa N, Abe H, Nishiyama N and Mori S 2015 Nat. Commun. 6 8249
[25] Yamada I, Takamatsu A, Asai K, Ohzuku H, Shirakawa T, Uchimura T, Kawaguchi S, Tsukasaki H, Mori S,Wada K, Ikeno H and Yagi S 2018 ACS Appl. Energy Mater. 1 3711
[26] Miao X, Zhang L, Wu L, Hu Z P, Shi L and Zhou S M 2019 Nat. Commun. 10 3809
[27] Ding J and Zhu X H 2024 J. Mater Chem. C 12 9510
[28] Calle-Vallejo F 2023 Adv. Sci. 10 2207644
[29] Liu J W, Luo W Z, Wang L, Zhang J J, Fu X Z and Luo J L 2022 Adv. Funct. Mater. 32 2110748
[30] Wang B and Zhang F X 2022 Angew. Chem. Int. Ed. 61 e202111026
[31] Liu J Y, Liu H, Chen H J, Du X W, Zhang B, Hong Z L, Sun S H and Wang W C 2020 Adv. Sci. 7 1901614
[32] Pang S L, Xu J, Su Y J, Yang G M, Zhu M, Cui M, Shen X Q and Chen C L 2020 Appl. Catal. B-Environ. 270 118868
[33] Guan D, Zhou J, Huang Y C, Dong C L, Wang J Q, Zhou W and Shao Z P 2019 Nat. Commun. 10 3755
[34] Kobayashi W, Terasaki I, Takeya J I, Tsukada I and Ando Y 2004 J. Phys. Soc. Jpn.73 2373
[35] Tang L L, Shi S P, Song Y, Hu J B, Diao K, Jiang J, Duan Z J and Chen D L 2023 Chin. Phys. B 32 066106
[36] Bielański A, Dereń J and Haber J 1957 Nature 179 668
[37] Liu Y D, Sakthivel T, Hu F, Tian Y H, Wu D S, Ang E H, Liu H, Guo S W, Peng S J and Dai Z F 2023 Adv. Energy Mater. 13 2203797
[38] Wang Y X, Yang Q, Liu C, Wang G X, Wu M, Liu H, Sui Y M and Yang X Y 2020 Chin. Phys. Lett. 37 058201
[39] Huang K, Lin C L, Yu G Q, Du P, Xie X Y, He X, Zheng Z C, Sun N, Tang H L, Li X B, Lei M and Wu H 2023 Adv. Funct. Mater. 33 2211102
[40] Liu W, Kawano K, Kamiko M, Kato Y, Okazaki Y, Yamada I and Yagi S 2022 Small 18 2202439
[41] Jones S D, Neal L M, Everett M L, Hoflund G B and Hagelin-Weaver H E 2010 Appl. Surf. Sci. 256 7345
[42] Wang J S, Xin S S, Xiao Y, Zhang Z F, Li Z M, Zhang W, Li C J, Bao R, Peng J, Yi J H and Chou S L 2022 Angew. Chem. 134 e202202518
[43] Sun N, Zheng Z C, Lai Z Z, Wang J J, Du P, Ying T P, Wang H F, Xu J C, Yu R Z, Hu Z W, Pao C W, Huang W H, Bi K, Lei M and Huang K 2024 Adv. Mater. 36 2404772
[44] Exner K S 2019 ChemCatChem 11 3234
[45] Sun N, Lai Z Z, Ding W B, Li W B, Wang T Y, Zheng Z C, Zhang B W, Dong X J, Wei P, Du P, Hu Z W, Pao C W, Huang W H, Wang H F, Lei M, Huang K and Yu R Z 2024 Adv. Sci. 2406453
[46] Fu G S, Gao H Z, Yang G W, Yu P and Liu P 2022 Chin. Phys. B 31 077901
[47] Lin G X, Zhang Z, Ju Q J,Wu T, Segre C U, ChenW, Peng H R, Zhang H, Liu Q N, Liu Z, Zhang Y F, Kong S Y, Mao Y L, Zhao W, Suenaga K, Huang F Q and Wang J C 2023 Nat. Commun. 14 280
[48] Ahmad A, Nairan A, Feng Z, Zheng R M, Bai Y L, Khan U and Gao J K 2024 Small 20 2311929
[1] Half-metallic ferromagnetic Weyl fermions related to dynamic correlations in the zinc-blende compound VAs
Xianyong Ding(丁献勇), Haoran Wei(魏皓然), Ruixiang Zhu(朱瑞翔), Xiaoliang Xiao(肖晓亮), Xiaozhi Wu(吴小志), and Rui Wang(王锐). Chin. Phys. B, 2024, 33(9): 097103.
[2] Comparative study of nudged elastic band and molecular dynamics methods for diffusion kinetics in solid-state electrolytes
Aming Lin(林啊鸣), Jing Shi(石晶), Su-Huai Wei(魏苏淮), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2024, 33(8): 086601.
[3] Rational molecular engineering towards efficient heterojunction solar cells based on organic molecular acceptors
Kaiyan Zhang(张凯彦), Peng Song(宋朋), Fengcai Ma(马凤才), and Yuanzuo Li(李源作). Chin. Phys. B, 2024, 33(6): 068402.
[4] Plasmon-induced nonlinear response on gold nanoclusters
Yuhui Song(宋玉慧), Yifei Cao(曹逸飞), Sichen Huang(黄思晨), Kaichao Li(李凯超), Ruhai Du(杜如海), Lei Yan(严蕾), Zhengkun Fu(付正坤), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(4): 044204.
[5] Local thermal conductivity of inhomogeneous nano-fluidic films:A density functional theory perspective
Zongli Sun(孙宗利), Yanshuang Kang(康艳霜), and Yanmei Kang(康艳梅). Chin. Phys. B, 2024, 33(4): 046503.
[6] Microscopic mechanism of plasmon-mediated photocatalytic H2 splitting on Ag-Au alloy chain
Yuhui Song(宋玉慧), Yirui Lu(芦一瑞), Axin Guo(郭阿鑫), Yifei Cao(曹逸飞), Jinping Li(李金萍), Zhengkun Fu(付正坤), Lei Yan(严蕾), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(3): 033101.
[7] Structure, electronic, and nonlinear optical properties of superalkaline M3O (M = Li, Na) doped cyclo[18]carbon
Xiao-Dong Liu(刘晓东), Qi-Liang Lu(卢其亮), and Qi-Quan Luo(罗其全). Chin. Phys. B, 2024, 33(2): 023601.
[8] Databases of 2D material-substrate interfaces and 2D charged building blocks
Jun Deng(邓俊), Jinbo Pan(潘金波), and Shixuan Du(杜世萱). Chin. Phys. B, 2024, 33(2): 026101.
[9] Ab initio study of phase stability, elastic anisotropy, and minimum thermal conductivity of MnB2 in different crystal structures
Xiao-Fan Wang(王小凡), Yi-Xian Wang(王乙先), Zhuo Wang(王卓), Yu-Xuan Zhang(张宇轩), and Jian-Bing Gu(顾建兵). Chin. Phys. B, 2024, 33(12): 126103.
[10] Optimized numerical density functional theory calculation of rotationally symmetric jellium model systems
Guangdi Zhang(张广迪), Li Mao(毛力), and Hongxing Xu(徐红星). Chin. Phys. B, 2024, 33(10): 107101.
[11] Charge self-consistent dynamical mean field theory calculations in combination with linear combination of numerical atomic orbitals framework based density functional theory
Xin Qu(瞿鑫), Peng Xu(许鹏), Zhiyong Liu(刘志勇), Jintao Wang(王金涛), Fei Wang(王飞), Wei Huang(黄威), Zhongxin Li(李忠星), Weichang Xu(徐卫昌), and Xinguo Ren(任新国). Chin. Phys. B, 2024, 33(10): 107106.
[12] Epitaxial growth of ultrathin gallium films on Cd(0001)
Zuo Li(李佐), Mingxia Shi(石明霞), Gang Yao(姚钢), Minlong Tao(陶敏龙), and Junzhong Wang(王俊忠). Chin. Phys. B, 2024, 33(1): 018101.
[13] Physical mechanism of oxygen diffusion in the formation of Ga2O3 Ohmic contacts
Su-Yu Xu(徐宿雨), Miao Yu(于淼), Dong-Yang Yuan(袁东阳), Bo Peng(彭博), Lei Yuan(元磊), Yu-Ming Zhang(张玉明), and Ren-Xu Jia(贾仁需). Chin. Phys. B, 2024, 33(1): 017302.
[14] Two-dimensional dumbbell silicene as a promising anode material for (Li/Na/K)-ion batteries
Man Liu(刘曼), Zishuang Cheng(程子爽), Xiaoming Zhang(张小明), Yefeng Li(李叶枫), Lei Jin(靳蕾),Cong Liu(刘丛), Xuefang Dai(代学芳), Ying Liu(刘影), Xiaotian Wang(王啸天), and Guodong Liu(刘国栋). Chin. Phys. B, 2023, 32(9): 096303.
[15] Enhanced xylene sensing performance of hierarchical flower-like Co3O4 via In doping
Jing Zhang(张京), Jianyu Ling(凌剑宇), Kuikun Gu(谷魁坤), Georgiy G. Levchenko, and Xiao Liang(梁霄). Chin. Phys. B, 2023, 32(6): 068104.
No Suggested Reading articles found!