INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Screening A-site ordered quadruple perovskites for alkaline hydrogen evolution reaction via unifying electronic configuration descriptor |
Ning Sun(孙宁)1, Wenbo Li(李文博)2,4, Yang Qin(秦杨)1, Zhichuan Zheng(郑智钏)1, Bowen Zhang(张博文)2, Xiangjiang Dong(董祥江)2, Peng Wei(魏鹏)2, Yixiao Zhang(张艺潇)1, Xian He(何贤)1, Xinyu Xie(谢新煜)1, Kai Huang(黄凯)1,†, Lailei Wu(吴来磊)3,4,‡, Ming Lei(雷鸣)1, Huiyang Gou(缑慧阳)2, and Runze Yu(于润泽)2,§ |
1 State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China; 2 Center for High Pressure Science and Technology Advanced Research, Beijing 100193, China; 3 College of Material Science and Engineering, Liaoning Technical University, Fuxin 123000, China; 4 College of Material Science and Engineering, Yanshan University, Qinhuangdao 066004, China |
|
|
Abstract Dynamic adsorption processes of reaction intermediates for alkaline hydrogen evolution (HER) catalysts are still confusing to understand. Here, we report a series of $A$-site ordered quadruple perovskite ruthenium-based electrocatalysts $A$Cu$_{3}$Ru$_{4}$O$_{12}$ ($A ={\rm Na}$, Ca, Nd, and La), with the target sample SrCu$_{3}$Ru$_{4}$O$_{12}$ exhibiting a very low overpotential (46 mV @10 mA$\cdot$ cm$^{-2}$) and excellent catalytic stability with little decays after 48-h durability test. Precise tuning $A$-site cations can change the average valence state of Cu and Ru, thus the plot of HER activity $versus$ the average Ru valence number shows a volcano-type relationship. Density functional theory indicates that the Ru 4d orbitals of SrCu$_{3}$Ru$_{4}$O$_{12}$ possesses the most suitable d-band center position among the five samples, which might be the key parameter to determine the catalytic performance. Our work provides further insight into the discovering advanced, efficient hydrogen evolution catalysts through designing precise descriptor.
|
Received: 03 September 2024
Revised: 25 September 2024
Accepted manuscript online: 27 September 2024
|
PACS:
|
81.05.Zx
|
(New materials: theory, design, and fabrication)
|
|
81.16.Hc
|
(Catalytic methods)
|
|
88.30.em
|
(Electrolytic hydrogen)
|
|
82.20.-w
|
(Chemical kinetics and dynamics)
|
|
Fund: Project supported financially by the National Key Research and Development Program of China (Grant No. 2023YFA1406000), the National Natural Science Foundation of China (Grant Nos. 22171283 and 12474002), the Fundamental Research Funds for the Central Universities (Grant Nos. 2023ZCJH03 and 2021XD-A041), the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications, China), the Teaching Reform Projects at BUPT (Grant No. 2022CXCYB03), and the BUPT Excellent Ph.D. Students Foundation (Grant No. CX2023108). |
Corresponding Authors:
Kai Huang, Lailei Wu, Runze Yu
E-mail: huang-kai@bupt.edu.cn;wulailei@lntu.edu.cn;runze.yu@hpstar.ac.cn
|
Cite this article:
Ning Sun(孙宁), Wenbo Li(李文博), Yang Qin(秦杨), Zhichuan Zheng(郑智钏), Bowen Zhang(张博文), Xiangjiang Dong(董祥江), Peng Wei(魏鹏), Yixiao Zhang(张艺潇), Xian He(何贤), Xinyu Xie(谢新煜), Kai Huang(黄凯), Lailei Wu(吴来磊), Ming Lei(雷鸣), Huiyang Gou(缑慧阳), and Runze Yu(于润泽) Screening A-site ordered quadruple perovskites for alkaline hydrogen evolution reaction via unifying electronic configuration descriptor 2024 Chin. Phys. B 33 128101
|
[1] Mahmood N, Yao Y, Zhang J W, Pan L, Zhang X W and Zou J J 2018 Adv. Sci. 5 1700464 [2] Guan D Q, Wang B W, Zhang J G, Shi R, Jiao K, Li L, Wang Y, Xie B, Zhang Q W, Yu J, Zhu Y F, Shao Z P and Ni M 2023 Energy Environ. Sci. 16 4926 [3] Bergero C, Gosnell G, Gielen D, Kang S, Bazilian M and Davis S J 2023 Nat. Sustain 6 404 [4] Chen Z G, Gong W B, Wang J, Hou S, Yang G, Zhu C F, Fan X Y, Li Y F, Gao R and Cui Y 2023 Nat. Commun. 14 5363 [5] Deng C, Toe C Y, Li X, Tan J J, Yang H P, Hu Q and He C X 2022 Adv. Energy Mater. 12 2201047 [6] Jiang Y, Fu H, Liang Z, Zhang Q and Du Y P 2023 Chem. Soc. Rev. 53 714 [7] Singh K, Tetteh E B, Lee H Y, Kang T H and Yu J S 2019 ACS Catal. 9 8622 [8] Zhang S, Li J and Wang E 2020 ChemElectroChem 7 4526 [9] Yang Y J, Yu Y H, Li J, Chen Q R, Du Y L, Rao P, Li R S, Jia C M, Kang Z Y, Deng P L and Shen Y J 2021 Nano-Micro Lett. 13 160 [10] Li H J W, Liu K, Fu J W, Chen K J, Yang K X, Lin Y Y, Yang B P, Wang Q Y, Pan H, Cai Z J, Li H M, Cao M Q, Hu J H, Lu Y R, Chan T S, Cortés E, Fratalocchi A and Liu M 2021 Nano Energy 82 105767 [11] Zhang Z, Li P, Wang Q, Feng Q, Tao Y K, Xu J Y, Jiang C, Lu X E, Fan J T, Gu M, Li H and Wang H J 2019 J. Mater. Chem. A 7 2780 [12] Liu W Q, Chen Q W, Shang Y X, Liu F, He R L, Zhang J Y, Li Q L, Chai H, Tan Y Y and Bao S J 2024 Adv. Funct. Mater. 2410325 [13] Luo J Q, Sun Y Q, Liu P L, Zhong S M, Li Y G, Zhang R L, Zhang P, Chi Y L, Xu H, Wei Y C, Song W Y, Li Z X and Liu J 2024 ACS Sustainable Chem. Eng. 12 5319 [14] Wu Z H, Liu L C, Zhao Z Y, Yang C D, Mu S D, Zhou H J, Luo X L, Ma T, Li S and Zhao C S 2023 Small 19 2204738 [15] Zhao J, Urrego-Ortiz R, Liao N, Calle-Vallejo F and Luo J S 2024 Nat. Commun. 15 6391 [16] Lu Q, Zou X H, Bu Y F, Wang Y and Shao Z P 2024 Energy Storage Mater. 68 103341 [17] Huang Z N, Li T T, Li B Y, Dong Q, Smith J, Li S, Xu L, Wang G F, Chi M F and Hu L B 2024 J. Am. Chem. Soc. 146 2167 [18] Ye X B, Song S Z, Li L L, Chang Y C, Qin S J, Liu Z H, Huang Y C, Zhou J, Zhang L J, Dong C L, Pao C W, Lin H J, Chen C T, Hu Z W, Wang J Q and Long Y W 2021 Chem. Mater. 33 9295 [19] Yu R Z 2024 Chin. J. High Press. Phys. 38 010102 [20] Wang X, Liu Z H, Lu D B, Pi M C, Pan Z and Long Y W 2024 Chin. J. High Press. Phys. 38 010101 [21] Lv Y X, Li F Y and Jin C Q 2012 Chin. J. High Press. Phys. 23 31 [22] Zhu Y L, Tahini H A, Hu Z W, Dai J, Chen Y B, Sun H N, Zhou W, Liu M L, Smith S C, Wang H T and Shao Z P 2019 Nat. Commun. 10 149 [23] Dai J, Zhu Y L, Tahini H A, Lin Q, Chen Y, Guan D Q, Zhou C, Hu Z W, Lin H J, Chan T S, Chen C T, Smith S C, Wang H T, Zhou W and Shao Z P 2020 Nat. Commun. 11 5657 [24] Yagi S, Yamada I, Tsukasaki H, Seno A, Murakami M, Fujii H, Chen H R, Umezawa N, Abe H, Nishiyama N and Mori S 2015 Nat. Commun. 6 8249 [25] Yamada I, Takamatsu A, Asai K, Ohzuku H, Shirakawa T, Uchimura T, Kawaguchi S, Tsukasaki H, Mori S,Wada K, Ikeno H and Yagi S 2018 ACS Appl. Energy Mater. 1 3711 [26] Miao X, Zhang L, Wu L, Hu Z P, Shi L and Zhou S M 2019 Nat. Commun. 10 3809 [27] Ding J and Zhu X H 2024 J. Mater Chem. C 12 9510 [28] Calle-Vallejo F 2023 Adv. Sci. 10 2207644 [29] Liu J W, Luo W Z, Wang L, Zhang J J, Fu X Z and Luo J L 2022 Adv. Funct. Mater. 32 2110748 [30] Wang B and Zhang F X 2022 Angew. Chem. Int. Ed. 61 e202111026 [31] Liu J Y, Liu H, Chen H J, Du X W, Zhang B, Hong Z L, Sun S H and Wang W C 2020 Adv. Sci. 7 1901614 [32] Pang S L, Xu J, Su Y J, Yang G M, Zhu M, Cui M, Shen X Q and Chen C L 2020 Appl. Catal. B-Environ. 270 118868 [33] Guan D, Zhou J, Huang Y C, Dong C L, Wang J Q, Zhou W and Shao Z P 2019 Nat. Commun. 10 3755 [34] Kobayashi W, Terasaki I, Takeya J I, Tsukada I and Ando Y 2004 J. Phys. Soc. Jpn.73 2373 [35] Tang L L, Shi S P, Song Y, Hu J B, Diao K, Jiang J, Duan Z J and Chen D L 2023 Chin. Phys. B 32 066106 [36] Bielański A, Dereń J and Haber J 1957 Nature 179 668 [37] Liu Y D, Sakthivel T, Hu F, Tian Y H, Wu D S, Ang E H, Liu H, Guo S W, Peng S J and Dai Z F 2023 Adv. Energy Mater. 13 2203797 [38] Wang Y X, Yang Q, Liu C, Wang G X, Wu M, Liu H, Sui Y M and Yang X Y 2020 Chin. Phys. Lett. 37 058201 [39] Huang K, Lin C L, Yu G Q, Du P, Xie X Y, He X, Zheng Z C, Sun N, Tang H L, Li X B, Lei M and Wu H 2023 Adv. Funct. Mater. 33 2211102 [40] Liu W, Kawano K, Kamiko M, Kato Y, Okazaki Y, Yamada I and Yagi S 2022 Small 18 2202439 [41] Jones S D, Neal L M, Everett M L, Hoflund G B and Hagelin-Weaver H E 2010 Appl. Surf. Sci. 256 7345 [42] Wang J S, Xin S S, Xiao Y, Zhang Z F, Li Z M, Zhang W, Li C J, Bao R, Peng J, Yi J H and Chou S L 2022 Angew. Chem. 134 e202202518 [43] Sun N, Zheng Z C, Lai Z Z, Wang J J, Du P, Ying T P, Wang H F, Xu J C, Yu R Z, Hu Z W, Pao C W, Huang W H, Bi K, Lei M and Huang K 2024 Adv. Mater. 36 2404772 [44] Exner K S 2019 ChemCatChem 11 3234 [45] Sun N, Lai Z Z, Ding W B, Li W B, Wang T Y, Zheng Z C, Zhang B W, Dong X J, Wei P, Du P, Hu Z W, Pao C W, Huang W H, Wang H F, Lei M, Huang K and Yu R Z 2024 Adv. Sci. 2406453 [46] Fu G S, Gao H Z, Yang G W, Yu P and Liu P 2022 Chin. Phys. B 31 077901 [47] Lin G X, Zhang Z, Ju Q J,Wu T, Segre C U, ChenW, Peng H R, Zhang H, Liu Q N, Liu Z, Zhang Y F, Kong S Y, Mao Y L, Zhao W, Suenaga K, Huang F Q and Wang J C 2023 Nat. Commun. 14 280 [48] Ahmad A, Nairan A, Feng Z, Zheng R M, Bai Y L, Khan U and Gao J K 2024 Small 20 2311929 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|