INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
A macro model of spin-transfer torque magnetic tunnel junction |
Ming-Bo Chen(陈明博)1,2, Kun-Kun Li(李琨琨)2, Xiao-Lei Yang(杨晓蕾)2, Xue Peng(彭雪)2, Wang-Da Li(李旺达)2, En-Long Liu(刘恩隆)2, Hui-Zhen Wu(吴惠桢)1, and Shi-Kun He(何世坤)2,† |
1 School of Physics and State Key Laboratory for Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310030, China; 2 Zhejiang HIKSTOR Technology Co., LTD., Hangzhou 311300, China |
|
|
Abstract The precise compact modeling of magnetic devices is pivotal for the integrated design of spin-transfer torque magnetic tunnel junction (STT-MTJ) in conjunction with CMOS circuitry. This work presents a macro model for an STT-MTJ which is compatible with SPICE simulation platforms. The model accurately replicates the electrical performance of the MTJ, encompassing the resistance-voltage characteristics and the pulse-width-dependent state switching behavior, and is validated with various experimental data. Additionally, the impact of process variations, particularly those affecting the MTJ diameter and barrier thickness is investigated and summarized in a corner model. Monte Carlo simulations demonstrate that our adaptable and streamlined model can be efficiently incorporated into the design of integrated circuits.
|
Received: 19 July 2024
Revised: 27 September 2024
Accepted manuscript online: 27 September 2024
|
PACS:
|
85.70.Ay
|
(Magnetic device characterization, design, and modeling)
|
|
85.75.Dd
|
(Magnetic memory using magnetic tunnel junctions)
|
|
Fund: Project supported by the National Science and Technology Major Project of China (Grant No. 2020AAA0109003). |
Corresponding Authors:
Shi-Kun He
E-mail: he_shikun@hikstor.com
|
Cite this article:
Ming-Bo Chen(陈明博), Kun-Kun Li(李琨琨), Xiao-Lei Yang(杨晓蕾), Xue Peng(彭雪), Wang-Da Li(李旺达), En-Long Liu(刘恩隆), Hui-Zhen Wu(吴惠桢), and Shi-Kun He(何世坤) A macro model of spin-transfer torque magnetic tunnel junction 2024 Chin. Phys. B 33 128502
|
[1] Fong X, Kim Y, Venkatesan R, Choday S H, Raghunathan A and Roy K 2016 Proc. IEEE 104 1449 [2] Bhatti S, Sbiaa R, Hirohata A, Ohno H, Fukami S and Piramanayagam S N 2017 Mater. Today 20 530 [3] Patrigeon G, Benoit P, Torres L, Senni S, Prenat G and Di Pendina G 2019 IEEE Access 7 58085 [4] Kang G, Shin H, Jung H, Lee S, Choi J, Baek S, Jung H, Kim D, Hwang S, Han S, Ji Y and Yoon S S 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), June 11-16, 2023, Kyoto, Japan, p. 1 [5] Roy A S, Sarkar A and Mudanai S P 2016 IEEE Trans. Electron Dev. 63 652 [6] Gaul N S, Jaiswal A, Yoon H, Lee T, Yamane K, Versaggi J, Carter R and Paul B C 2022 IEEE International Memory Workshop (IMW), May 15-18, 2022, Dresden, Germany, p. 1 [7] Kammerer J B, Madec M and Hébrard L 2010 IEEE Trans. Electron Dev. 57 1408 [8] Ji M H, Zhang X M, Pan M C, Du Q F, Hu Y G, Hu J F, QiuWC, Peng J P, Lin Z and Li P S 2023 Chin. Phys. B 32 078506 [9] Zhao W, Belhaire E, Mistral Q, Chappert C, Javerliac V, Dieny B and Nicolle E 2006 Proceedings of the 2006 IEEE International Behavioral Modeling and SimulationWorkshop, September 14-15, 2006, San Jose, CA, USA, p. 40 [10] Harms J D, Ebrahimi F, Yao X and Wang J P 2010 IEEE Trans. Electron Dev. 57 1425 [11] Xu Z, Yang C, Mao M, Sutaria K B, Chakrabarti C and Cao Y 2014 Solid-State Electron. 102 76 [12] Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F and Ohno H 2010 Nat. Mater. 9 721 [13] Julliere M 1975 Phys. Lett. A 54 225 [14] Yuasa S, Nagahama T, Fukushima A, Suzuki Y and Ando K 2004 Nat. Mater. 3 868 [15] Lee S, Lee S, Shin H and Kim D 2005 Jpn. J. Appl. Phys. 44 2696 [16] Shang C H, Nowak J, Jansen R and Moodera J S 1998 Phys. Rev. B 58 R2917(R) [17] Yuan L, Liou S H and Wang D 2006 Phys. Rev. B 73 134403 [18] Wang S G, Ward R C C, Du G X, Han X F, Wang C and Kohn A 2008 Phys. Rev. B 78 180411 [19] Zhang S, Levy P M, Marley A C and Parkin S S P 1997 Phys. Rev. Lett. 79 3744 [20] Wei H X, Qin Q H, Ma Q L, Zhang X G and Han X F 2010 Phys. Rev. B 82 134436 [21] Khvalkovskiy A V, Apalkov D,Watts S, Chepulskii R, Beach R S, Ong A, Tang X, Driskill-Smith A, ButlerWH, Visscher P B, Lottis D, Chen E, Nikitin V and Krounbi M 2013 J. Phys. Appl. Phys. 46 139601 [22] Butler W H, Mewes T, Mewes C K A, Visscher P B, Rippard W H, Russek S E and Heindl R 2012 IEEE Trans. Magn. 48 4684 [23] Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1 [24] Sun J Z 2000 Phys. Rev. B 62 570 [25] Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M and Yang S H 2004 Nat. Mater. 3 862 [26] Ma Q L, Wang S G, Zhang J, Wang Y, Ward R C C, Wang C, Kohn A, Zhang X G and Han X F 2009 Appl. Phys. Lett. 95 052506 [27] Natsui M and Hanyu T 2014 IEEE 44th International Symposium on Multiple-Valued Logic, May 19-21, 2014, Bremen, Germany, p. 243 [28] García-Redondo F, Rao S, Gupta M, Perumkunnil M, Xiang Y, Abdi D, Van Beek S, Couet S and García-Bardon M 2023 ESSDERC 2023- IEEE 53rd European Solid-State Device Research Conference (ESSDERC), September 11-14, 2023, Lisbon, Portugal, p. 97 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|