Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 128503    DOI: 10.1088/1674-1056/ad7c2d
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Back-side stress to ease p-MOSFET degradation on e-MRAM chips

Zhi-Meng Yu(于志猛)1,2,†, Xiao-Lei Yang(杨晓蕾)2,†, Xiao-Nan Zhao(赵晓楠)2, Yan-Jie Li(李艳杰)2, Shi-Kun He(何世坤)2,‡, and Ye-Wu Wang(王业伍)1,§
1 Department of Physics, Zhejiang Province Key Laboratory of Quantum Technology and Device & State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China;
2 Zhejiang Hikstor Technology Co., Ltd., Hangzhou 311300, China
Abstract  The magnetoresistive random access memory process makes a great contribution to threshold voltage deterioration of metal-oxide-silicon field-effect transistors, especially on p-type devices. Herein, a method was proposed to reduce the threshold voltage degradation by utilizing back-side stress. Through the deposition of tensile material on the back side, positive charges generated by silicon-hydrogen bond breakage were inhibited, resulting in a potential reduction in threshold voltage shift by up to 20%. In addition, it was found that the method could only relieve silicon-hydrogen bond breakage physically, thus failing to provide a complete cure. However, it holds significant potential for applications where additional thermal budget is undesired. Furthermore, it was also concluded that the method used in this work is irreversible, with its effect sustained to the chip package phase, and it ensures competitive reliability of the resulting magnetic tunnel junction devices.
Keywords:  back-side stress      metal-oxide-silicon field-effect transistor (MOSFET)      magnetoresistive random access memory (MRAM)      threshold voltage  
Received:  04 July 2024      Revised:  19 August 2024      Accepted manuscript online:  18 September 2024
PACS:  85.40.-e (Microelectronics: LSI, VLSI, ULSI; integrated circuit fabrication technology)  
  81.05.-t (Specific materials: fabrication, treatment, testing, and analysis)  
  42.82.Cr (Fabrication techniques; lithography, pattern transfer)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51672246), the National Key Research and Development Program of China (Grant Nos. 2017YFA0304302 and 2020AAA0109003), and the Key Research and Development Program of Zhejiang Province, China (Grant No. 2021C01002).
Corresponding Authors:  Shi-Kun He, Ye-Wu Wang     E-mail:  he_shikun@hikstor.com;yewuwang@zju.edu.cn

Cite this article: 

Zhi-Meng Yu(于志猛), Xiao-Lei Yang(杨晓蕾), Xiao-Nan Zhao(赵晓楠), Yan-Jie Li(李艳杰), Shi-Kun He(何世坤), and Ye-Wu Wang(王业伍) Back-side stress to ease p-MOSFET degradation on e-MRAM chips 2024 Chin. Phys. B 33 128503

[1] Naik V B, Lee K, Yamane K, et al. 2019 IEEE International Electron Devices Meeting (IEDM), December 7-11, 2019, San Francisco, California, USA, p. 2.3.1
[2] Song Y J, Lee J H, Han S H, et al. 2018 IEEE International Electron Devices Meeting (IEDM), December 1-5, 2018, San Francisco, California, USA, p. 18.2.1
[3] GallagherWJ, Chien E, Chiang TW, Huang J C, ShihMC,Wang C Y, Bair C, Lee G, Shih Y C, Lee C F,Wang R, Shen K H,Wu J J,WangW and Chuang H 2019 Symposium on VLSI Technology, June 9-14, 2019, Kyoto, Japan, p. T190
[4] WangranW, Chang L, Jiabao S, Yi S and Yi Z 2014 IEEE International Reliability Physics Symposium, June 1-5, 2014, Piscataway, State of New Jersey, USA, p. XT.11.1
[5] Irisawa T, Numata T, Toyoda E, Hirashita N, Tezuka T, Sugiyama N and Takagi S 2008 IEEE Trans. Electron Devices 55 3159
[6] Shih J R, Wang J J, Ken W, Peng Y and Yue J T 2003 IEEE International Reliability Physics Symposium Proceedings, 2003, 41st Annual., March 30-April 4, 2003, Piscataway, State of New Jersey, USA, p. 612
[7] Morifuji E, Kumamori T, Muta M, et al. 2002 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No. 01CH37303), June 11-13, 2002, Honolulu, Hawaii, USA, p. 218
[8] Lee D Y, Lin H C, Chiang W J, Lu W T, Huang G W and Wang T 2002 7th International Symposium on Plasma- and Process-Induced Damage, June 5-7, 2002, Maui, Hawaii, USA, p. 150
[9] Kol’dyaev V 2004 IEEE International Reliability Physics Symposium. Proceedings, April 25-29, 2004, Piscataway, State of New Jersey, USA, p. 663
[10] Kimizuka N, Yamaguchi K, Imai K, Iizuka T, Liu C T, Keller R C and Horiuchi T 2000 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No. 00CH37104), June 13-15, 2000, Honolulu, Hawaii, USA, p. 92
[11] Tsymbal E Y 2012 Nat. Mater. 11 12
[12] Ye X G, Zhu P F, Xu W Z, Shang N, Liu K and Liao Z M 2022 Chin. Phys. Lett. 39 037303
[13] Zhu W, Xie S, Lin H, Zhang G, Wu H, Hu T, Wang Z, Zhang X, Xu J, Wang Y, Zheng Y, Yan F, Zhang J, Zhao L, Patané A, Zhang J, Chang H and Wang K 2022 Chin. Phys. Lett. 39 128501
[14] Sun H L, Han R K, Qin H R, Zhao X P, Xie Z C, Wei D H and Zhao J H 2024 Chin. Phys. Lett. 41 057503
[15] Naik V B, Yamane K, Lee T Y, et al. 2020 IEEE International Electron Devices Meeting (IEDM), December 12-18, 2020, San Francisco, California, USA, p. 11.3.1
[16] Han S H, Lee J M, Shin H M, et al. 2020 IEEE International Electron Devices Meeting (IEDM), December 12-18, 2020, San Francisco, California, USA, p. 11.2.1
[17] Chiang H L, Wang J F, Chen T C, et al. 2021 Symposium on VLSI Technology, June 13-19, 2021, Kyoto, Japan, p. 1
[18] Aggarwal S, Almasi H, DeHerrera M, Hughes B, Ikegawa S, Janesky J, Lee H K, Lu H, Mancoff F B, Nagel K, Shimon G, Sun J J, Andre T and Alam SM2019 IEEE International Electron Devices Meeting (IEDM), December 7-11, 2019, San Francisco, California, USA, p. 2.1.1
[19] Lee T Y, Lee J M, Kim M K, et al. 2022 International Electron Devices Meeting (IEDM), December 3-7, 2022, San Francisco, California, USA, p. 10.7.1
[20] Egley J L and Chidambarrao D 1993 Solid-State Electron. 36 1653
[21] Schroder D K and Babcock J A 2003 J. Appl. Phys. 94 1
[22] Chung S S, Yeh C H, Feng H J, Lai C S, Yang J J, Chen C C, Jin Y, Chen S C, LiangMS 2006 IEEE Transactions on Device and Materials Reliability 6 95
[23] Irisawa T, Numata T, Toyoda E, Hirashita N, Tezuka T, Sugiyama N and Takagi S 2007 IEEE Symposium on VLSI Technology, June 12-14, 2007, Kyoto, Japan, p. 36
[24] Alam M A and Mahapatra S 2005 Microelectronics Reliability 45 71
[1] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[2] Investigation of degradation and recovery characteristics of NBTI in 28-nm high-k metal gate process
Wei-Tai Gong(巩伟泰), Yan Li(李闫), Ya-Bin Sun(孙亚宾), Yan-Ling Shi(石艳玲), and Xiao-Jin Li(李小进). Chin. Phys. B, 2023, 32(12): 128502.
[3] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[4] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[5] Combined effects of cycling endurance and total ionizing dose on floating gate memory cells
Si-De Song(宋思德), Guo-Zhu Liu(刘国柱), Qi He(贺琪), Xiang Gu(顾祥), Gen-Shen Hong(洪根深), and Jian-Wei Wu(吴建伟). Chin. Phys. B, 2022, 31(5): 056107.
[6] Study on a novel vertical enhancement-mode Ga2O3 MOSFET with FINFET structure
Liangliang Guo(郭亮良), Yuming Zhang(张玉明), Suzhen Luan(栾苏珍), Rundi Qiao(乔润迪), and Renxu Jia(贾仁需). Chin. Phys. B, 2022, 31(1): 017304.
[7] Investigation on threshold voltage of p-channel GaN MOSFETs based on p-GaN/AlGaN/GaN heterostructure
Ruo-Han Li(李若晗), Wu-Xiong Fei(费武雄), Rui Tang(唐锐), Zhao-Xi Wu(吴照玺), Chao Duan(段超), Tao Zhang(张涛), Dan Zhu(朱丹), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087305.
[8] Analysis on degradation mechanisms of normally-off p-GaN gate AlGaN/GaN high-electron mobility transistor
Si-De Song(宋思德), Su-Zhen Wu(吴素贞), Guo-Zhu Liu(刘国柱), Wei Zhao(赵伟), Yin-Quan Wang(王印权), Jian-Wei Wu(吴建伟), and Qi He(贺琪). Chin. Phys. B, 2021, 30(4): 047103.
[9] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
[10] Negative bias-induced threshold voltage instability and zener/interface trapping mechanism in GaN-based MIS-HEMTs
Qing Zhu(朱青), Xiao-Hua Ma(马晓华), Yi-Lin Chen(陈怡霖), Bin Hou(侯斌), Jie-Jie Zhu(祝杰杰), Meng Zhang(张濛), Mei Wu(武玫), Ling Yang(杨凌), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(4): 047304.
[11] Investigation and active suppression of self-heating induced degradation in amorphous InGaZnO thin film transistors
Dong Zhang(张东), Chenfei Wu(武辰飞), Weizong Xu(徐尉宗), Fangfang Ren(任芳芳), Dong Zhou(周东), Peng Yu(于芃), Rong Zhang(张荣), Youdou Zheng(郑有炓), Hai Lu(陆海). Chin. Phys. B, 2019, 28(1): 017303.
[12] High-performance InAlGaN/GaN enhancement-mode MOS-HEMTs grown by pulsed metal organic chemical vapor deposition
Ya-Chao Zhang(张雅超), Zhi-Zhe Wang(王之哲), Rui Guo(郭蕊), Ge Liu(刘鸽), Wei-Min Bao(包为民), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(1): 018102.
[13] Characteristics and threshold voltage model of GaN-based FinFET with recessed gate
Chong Wang(王冲), Xin Wang(王鑫), Xue-Feng Zheng(郑雪峰), Yun Wang(王允), Yun-Long He(何云龙), Ye Tian(田野), Qing He(何晴), Ji Wu(吴忌), Wei Mao(毛维), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2018, 27(9): 097308.
[14] An analytical model for nanowire junctionless SOI FinFETs with considering three-dimensional coupling effect
Fan-Yu Liu(刘凡宇), Heng-Zhu Liu(刘衡竹), Bi-Wei Liu(刘必慰), Yu-Feng Guo(郭宇峰). Chin. Phys. B, 2016, 25(4): 047305.
[15] Two-dimensional models of threshold voltage andsubthreshold current for symmetrical double-material double-gate strained Si MOSFETs
Yan-hui Xin(辛艳辉), Sheng Yuan(袁胜), Ming-tang Liu(刘明堂),Hong-xia Liu(刘红侠), He-cai Yuan(袁合才). Chin. Phys. B, 2016, 25(3): 038502.
No Suggested Reading articles found!