Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 107504    DOI: 10.1088/1674-1056/acb424
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin torque oscillator based on magnetic tunnel junction with MgO cap layer for radio-frequency-oriented neuromorphic computing

Huayao Tu(涂华垚)1,2, Yanxiang Luo(雒雁翔)1,2, Kexin Zeng(曾柯心)1,2,5, Yuxuan Wu(吴宇轩)1,2, Like Zhang(张黎可)3,†, Baoshun Zhang(张宝顺)2, and Zhongming Zeng(曾中明)1,2,4,‡
1 School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China;
2 Nanofabrication Facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China;
3 School of Electronics and Information Engineering, Wuxi University, Wuxi 214105, China;
4 Nanchang(SINANONC) Nano-Devices and Technologies Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Nanchang 330200, China;
5 Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
Abstract  Recently, it has been proposed that spin torque oscillators (STOs) and spin torque diodes could be used as artificial neurons and synapses to directly process microwave signals, which could lower latency and power consumption greatly. However, one critical challenge is to make the microwave emission frequency of the STO stay constant with a varying input current. In this work, we study the microwave emission characteristics of STOs based on magnetic tunnel junction with MgO cap layer. By applying a small magnetic field, we realize the invariability of the microwave emission frequency of the STO, making it qualified to act as artificial neuron. Furthermore, we have simulated an artificial neural network using STO neuron to recognize the handwritten digits in the Mixed National Institute of Standards and Technology database, and obtained a high accuracy of 92.28%. Our work paves the way for the development of radio-frequency-oriented neuromorphic computing systems.
Keywords:  spin torque oscillators      artificial neuron      neuromorphic computing      magnetic tunnel junctions  
Received:  01 November 2022      Revised:  12 January 2023      Accepted manuscript online:  18 January 2023
PACS:  75.76.+j (Spin transport effects)  
  72.25.-b (Spin polarized transport)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974379 and 12204357), K. C. Wong Education Foundation (Grant No. GJTD-2019-14), Jiangxi Province "Double Thousand Plan" (Grant No. S2019CQKJ2638), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 22KB140017), and Wuxi University Research Start-up Fund for Introduced Talents (Grant No. 2022r006).
Corresponding Authors:  Like Zhang, Zhongming Zeng     E-mail:  lkzhang@cwxu.edu.cn;zmzeng2012@sinano.ac.cn

Cite this article: 

Huayao Tu(涂华垚), Yanxiang Luo(雒雁翔), Kexin Zeng(曾柯心), Yuxuan Wu(吴宇轩), Like Zhang(张黎可), Baoshun Zhang(张宝顺), and Zhongming Zeng(曾中明) Spin torque oscillator based on magnetic tunnel junction with MgO cap layer for radio-frequency-oriented neuromorphic computing 2023 Chin. Phys. B 32 107504

[1] Marković D, Mizrahi A, Querlioz D and Grollier J 2020 Nat. Rev. Phys. 2 499
[2] Roy K, Jaiswal A and Panda P 2019 Nature 575 607
[3] LeCun Y, Bengio Y and Hinton G 2015 Nature 521 436
[4] Boybat I, Le Gallo M, Nandakumar S R, Moraitis T, Parnell T, Tuma T, Rajendran B, Leblebici Y, Sebastian A and Eleftheriou E 2018 Nat. Commun. 9 2514
[5] Luo Z D, Yang M M, Liu Y and Alexe M 2021 Adv. Mater. 33 2005620
[6] Jaiswal A, Agrawal A, Panda P and Roy K 2021 IEEE T. Magn. 57 4300209
[7] Grollier J, Querlioz D, Camsari K Y, Everschor-Sitte K, Fukami S and Stiles M D 2020 Nat. Electron. 3 360
[8] Romera M, Talatchian P, Tsunegi S, Abreu Araujo F, Cros V, Bortolotti P, Trastoy J, Yakushiji K, Fukushima A, Kubota H, Yuasa S, Ernoult M, Vodenicarevic D, Hirtzlin T, Locatelli N, Querlioz D and Grollier J 2018 Nature 563 230
[9] Xue C X, Chiu Y C, Liu T W, Huang T Y, Liu J S, Chang T W, Kao H Y, Wang J H, Wei S Y, Lee C Y, Huang S P, Hung J M, Teng S H, Wei W C, Chen Y R, Hsu T H, Chen Y K, Lo Y C, Wen T H, Lo C C, Liu R S, Hsieh C C, Tang K T, Ho M S, Su C Y, Chou C C, Chih Y D and Chang M F 2021 Nat. Electron. 4 81
[10] Ielmini D and Wong H S P 2018 Nat. Electron. 1 333
[11] Cao G M, Meng P, Chen J G, Liu H S, Bian R J, Zhu C, Liu F C and Liu Z 2020 Advanced Functional Materials 31 2005443
[12] Huh W, Lee D and Lee C H 2020 Adv. Mater. 32 2002092
[13] Cai W, Shi K, Zhuo Y, Zhu D, Huang Y, Yin J, Cao K, Wang Z, Guo Z, Wang Z, Wang G and Zhao W 2021 IEEE Electron Device Letters 42 704
[14] Fong X Y, Kim Y S, Yogendra K, Fan D L, Sengupta A, Raghunathan A and Roy K 2016 IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 35 1
[15] Cai J L, Fang B, Wang C and Zeng Z M 2017 Appl. Phys. Lett. 111 182410
[16] Lv H, Fidalgo J, Silva A V, Leitao D C, Kampfe T, Langer J, Wrona J, Ocker B, Freitas P P and Cardoso S 2020 Adv. Electron. Mater. 7 2000976
[17] Zhang X, Cai W, Wang M, Pan B, Cao K, Guo M, Zhang T, Cheng H, Li S, Zhu D, Wang L, Shi F, Du J and Zhao W 2021 Adv. Sci. 8 2004645
[18] Shi K, Cai W, Jiang S, Zhu D, Cao K, Guo Z, Wei J, Du A, Li Z, Huang Y, Yin J, Åkerman J and Zhao W 2021 Science China Physics, Mechanics & Astronomy 65 227511
[19] Cai W, Wang M, Cao K, Yang H, Peng S, Li H and Zhao W 2021 Science China Information Sciences 65 122406
[20] Leroux N, Marković D, Martin E, Petrisor T, Querlioz D, Mizrahi A and Grollier J 2021 Phys. Rev. Appl. 15 034067
[21] Leroux N, Mizrahi A, Markovic D, Sanz-Hernandez D, Trastoy J, Bortolotti P, Martins L, Jenkins A, Ferreira R and Grollier J 2021 Neuromorph. Comput. Eng. 1 011001
[22] Slavin A and Tiberkevich V 2009 IEEE Transactions on Magnetics 45 1875
[23] Leroux N, De Riz A, Sanz-Hernández D, Marković D, Mizrahi A and Grollier J 2022 Neuromorph. Comput. Eng. 2 034002
[24] Zhang L K, Fang B, Cai J L and Zeng Z M 2018 Appl. Phys. Lett. 112 242408
[25] Kubota H, Ishibashi S, Saruya T, Nozaki T, Fukushima A, Yakushiji K, Ando K, Suzuki Y and Yuasa S 2012 J. Appl. Phys. 111 07C723
[26] Slavin A and Tiberkevich V 2008 IEEE Transactions on Magnetics 44 1916
[27] Slavin A and Tiberkevich V 2005 Appl. Rev. Lett. 95 237201
[28] Slavin A N and Kabos P 2005 IEEE Transactions on Magnetics 41 1264
[29] Dumas R K, Iacocca E, Bonetti S, Sani S R, Mohseni S M, Eklund A, Persson J, Heinonen O and Åkerman J 2013 Appl. Rev. Lett. 110 257202
[30] Pufall M R, Rippard W H, Russek S E, Kaka S and Katine J A 2006 Appl. Rev. Lett. 97 087206
[31] Rippard W H, Pufall M R and Russek S E 2006 Phys. Rev. B 74 224409
[32] Gerhart G, Bankowski E, Melkov G A, Tiberkevich V S and Slavin A N 2007 Phys. Rev. B 76 024437
[33] Jiang S, Khymyn R, Chung S, Le T Q, Diez L H, Houshang A, Zahedinejad M, Ravelosona D and Åkerman J 2020 Appl. Phys. Lett. 116 072403
[34] Goncçalves A M, Barsukov I, Chen Y J, Yang L, Katine J A and Krivorotov I N 2013 Appl. Phys. Lett. 103 172406
[35] Lecun C C and Burges C J C http://yann.lecun.com/exdb/mnist/
[36] Cai J L, Zhang L K, Fang B, Lv W X, Zhang B S, Finocchio G, Xiong R, Liang S H and Zeng Z M 2019 Appl. Phys. Lett. 114 192402
[37] Garello K, Yasin F, Hody H, Couet S, Souriau L, Sharifi S H, Swerts J, Carpenter R, Rao S, Kim W, Wu J, Sethu K K V, Pak M, Jossart N, Crotti D, Furnemont A and Kar G S 2019 Symposium on VLSI Technology 18852132
[38] Zahedinejad M, Fulara H, Khymyn R, Houshang A, Dvornik M, Fukami S, Kanai S, Ohno H and Akerman J 2021 Nat. Mater. 21 81
[39] Liu M, Howe B M, Grazulis L, Mahalingam K, Nan T, Sun N X and Brown G J 2013 Adv. Mater. 25 4886
[1] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[2] Switching plasticity in compensated ferrimagnetic multilayers for neuromorphic computing
Weihao Li(李伟浩), Xiukai Lan(兰修凯), Xionghua Liu(刘雄华), Enze Zhang(张恩泽), Yongcheng Deng(邓永城), and Kaiyou Wang(王开友). Chin. Phys. B, 2022, 31(11): 117106.
[3] Voltage-controllable magnetic skyrmion dynamics for spiking neuron device applications
Ming-Min Zhu(朱明敏), Shu-Ting Cui(崔淑婷), Xiao-Fei Xu(徐晓飞), Sheng-Bin Shi(施胜宾), Di-Qing Nian(年迪青), Jing Luo(罗京), Yang Qiu(邱阳), Han Yang(杨浛), Guo-Liang Yu(郁国良), and Hao-Miao Zhou (周浩淼). Chin. Phys. B, 2022, 31(1): 018503.
[4] Digital and analog memory devices based on 2D layered MPS3 ( M=Mn, Co, Ni) materials
Guihua Zhao(赵贵华), Li Wang(王力), Xi Ke(柯曦), and Zhiyi Yu(虞志益). Chin. Phys. B, 2021, 30(4): 047303.
[5] Experiments and SPICE simulations of double MgO-based perpendicular magnetic tunnel junction
Qiuyang Li(李求洋), Penghe Zhang(张蓬鹤), Haotian Li(李浩天), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Chunjie Yan(晏春杰), Liyuan Li(李丽媛), Yongbing Xu(徐永兵), Weixin Zhang(张卫欣), Bo Liu(刘波), Hao Meng(孟浩), Ronghua Liu(刘荣华), and Youwei Du(都有为). Chin. Phys. B, 2021, 30(4): 047504.
[6] Review of resistive switching mechanisms for memristive neuromorphic devices
Rui Yang(杨蕊). Chin. Phys. B, 2020, 29(9): 097305.
[7] Silicon-based optoelectronic synaptic devices
Lei Yin(尹蕾), Xiaodong Pi(皮孝东), Deren Yang(杨德仁). Chin. Phys. B, 2020, 29(7): 070703.
[8] Optoelectronic memristor for neuromorphic computing
Wuhong Xue(薛武红), Wenjuan Ci(次文娟), Xiao-Hong Xu(许小红), Gang Liu(刘钢). Chin. Phys. B, 2020, 29(4): 048401.
[9] Low frequency noise in asymmetric double barrier magnetic tunnel junctions with a top thin MgO layer
Guo Hui-Qiang (郭会强), Tang Wei-Yue (唐伟跃), Liu Liang (刘亮), Wei Jian (危健), Li Da-Lai (李大来), Feng Jia-Feng (丰家峰), Han Xiu-Feng (韩秀峰). Chin. Phys. B, 2015, 24(7): 078504.
[10] Thermally activated magnetization reversal in magnetic tunnel junctions
Zhou Guang-Hong(周广宏), Wang Yin-Gang(王寅岗), Qi Xian-Jin(祁先进), Li Zi-Quan(李子全), and Chen Jian-Kang(陈建康). Chin. Phys. B, 2009, 18(2): 790-794.
[11] Bulk-like contribution to tunnel magnetoresistance in magnetic tunnel junctions
Zhu Tao (朱涛), Zhan Wen-Shan (詹文山), Shen Feng (沈峰), Zhang Ze (张泽), X. H. Xiang, G. Landry, John Q. Xiao. Chin. Phys. B, 2003, 12(6): 665-668.
No Suggested Reading articles found!