Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 107201    DOI: 10.1088/1674-1056/ad711c
RAPID COMMUNICATION Prev   Next  

Regulating Anderson localization with structural defect disorder

Mouyang Cheng(程谋阳)1, Haoxiang Chen(陈浩翔)1, and Ji Chen(陈基)1,2,3,4,†
1 School of Physics, Peking University, Beijing 100871, China;
2 Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China;
3 Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, China;
4 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Abstract  Localization due to disorder has been one of the most intriguing theoretical concepts that evolved in condensed matter physics. Here, we expand the theory of localization by considering two types of disorders at the same time, namely, the original Anderson's disorder and the structural defect disorder, which has been suggested to be a key component in recently discovered two-dimensional amorphous materials. While increasing the degree of both disorders could induce localization of wavefunction in real space, we find that a small degree of structural defect disorder can significantly enhance the localization. As the degree of structural defect disorder increases, localized states quickly appear within the extended phase to enter a broad crossover region with mixed phases. We establish two-dimensional diagrams for the wavefunction localization and conductivity to highlight the interplay between the two types of disorders. Our theoretical model provides a comprehensive understanding of localization in two-dimensional amorphous materials and highlights the promising tunability of their transport properties.
Keywords:  Anderson localization      structural defect disorder      electronic transport properties  
Received:  01 June 2024      Revised:  17 August 2024      Accepted manuscript online:  20 August 2024
PACS:  72.15.Rn (Localization effects (Anderson or weak localization))  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  61.43.-j (Disordered solids)  
  61.43.Bn (Structural modeling: serial-addition models, computer simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 92165101), the National Key R&D Program of China (Grant No. 2021YFA1400500), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33000000), and the Beijing Natural Science Foundation (Grant No. JQ22001).
Corresponding Authors:  Ji Chen     E-mail:  ji.chen@pku.edu.cn

Cite this article: 

Mouyang Cheng(程谋阳), Haoxiang Chen(陈浩翔), and Ji Chen(陈基) Regulating Anderson localization with structural defect disorder 2024 Chin. Phys. B 33 107201

[1] Anderson P W 1958 Phys. Rev. 109 1492
[2] Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287
[3] Mott N F 1968 Rev. Mod. Phys. 40 677
[4] Mott N F 1968 Philosophical Magazine 17 1259
[5] Anderson P W, Thouless D J, Abrahams E and Fisher D S 1980 Phys. Rev. B 22 3519
[6] Abrahams E, Anderson P W, Licciardello D C and Ramakrishnan T V 1979 Phys. Rev. Lett. 42 673
[7] Lee P A and Fisher D S 1981 Phys. Rev. Lett. 47 882
[8] Edwards J T and Thouless D J 1972 J. Phys. C: Solid State Phys. 5 807
[9] Stein J and Krey U 1980 Zeitschrift fur Physik B 37 13
[10] Thouless D 1974 Physics Reports 13 93
[11] Abou-Chacra R, Thouless D J and Anderson P W 1973 J. Phys. C: Solid State Phys. 6 1734
[12] Piao X and Park N 2022 ACS Photonics 9 1655
[13] Corona-Patricio G, Kuhl U, Mortessagne F, Vignolo P and Tessieri L 2019 New J. Phys. 21 073041
[14] Sutradhar J, Mukerjee S, Pandit R and Banerjee S 2019 Phys. Rev. B 99 224204
[15] Agarwal K, Ganeshan S and Bhatt R N 2017 Phys. Rev. B 96 014201
[16] Todorov T 2002 J. Phys.: Condens. Matter 14 3049
[17] Furusaki A 1999 Phys. Rev. Lett. 82 604
[18] Sugiyama T and Nagaosa N 1993 Phys. Rev. Lett. 70 1980
[19] Hetényi B, Parlak S and Yahyavi M 2021 Phys. Rev. B 104 214207
[20] Chabanov A A, Stoytchev M and Genack A Z 2000 Nature 404 850
[21] Weaver R 1990 Wave Motion 12 129
[22] Hu H, Strybulevych A, Page J H, Skipetrov S E and van Tiggelen B A 2008 Nat. Phys. 4 945
[23] Schwartz T, Bartal G, Fishman S and Segev M 2007 Nature 446 52
[24] Chabé J, Lemarié G, Grémaud B, Delande D, Szriftgiser P and Garreau J C 2008 Phys. Rev. Lett. 101 255702
[25] Lagendijk A, van Tiggelen B and Wiersma D S 2009 Physics Today 62 24
[26] Li J, Chu R L, Jain J K and Shen S Q 2009 Phys. Rev. Lett. 102 136806
[27] Groth C W, Wimmer M, Akhmerov A R, Tworzydło J and Beenakker C W J 2009 Phys. Rev. Lett. 103 196805
[1] Orbital angular momentum conversion of acoustic vortex beams via planar lattice coupling
Qingbang Han(韩庆邦), Zhipeng Liu(刘志鹏), Cheng Yin(殷澄), Simeng Wu(吴思梦), Yinlong Luo(罗寅龙), Zixin Yang(杨子鑫), Xiuyang Pang(庞修洋), Yiqiu Wang(王溢秋), Xuefen Kan(阚雪芬), Yuqiu Zhang(张雨秋), Qiang Yu(俞强), and Jian Wu(吴坚). Chin. Phys. B, 2024, 33(9): 094301.
[2] Periodic electron oscillation in coupled two-dimensional lattices
Yan-Yan Lu(陆艳艳), Chao Wang(王超), Jin-Yi Jiang(将金益), Jie Liu(刘洁), and Jian-Xin Zhong(钟建新). Chin. Phys. B, 2023, 32(7): 070306.
[3] Impeded thermal transport in aperiodic BN/C nanotube superlattices due to phonon Anderson localization
Luyi Sun(孙路易), Fangyuan Zhai(翟方园), Zengqiang Cao(曹增强), Xiaoyu Huang(黄晓宇), Chunsheng Guo(郭春生), Hongyan Wang(王红艳), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2023, 32(5): 056301.
[4] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[5] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[6] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[7] Mobility edges and reentrant localization in one-dimensional dimerized non-Hermitian quasiperiodic lattice
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Jun-Peng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(9): 097202.
[8] Energy relaxation in disordered lattice φ4 system: The combined effects of disorder and nonlinearity
Jianjin Wang(汪剑津), Yong Zhang(张勇), and Daxing Xiong(熊大兴). Chin. Phys. B, 2020, 29(12): 120503.
[9] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
[10] Phase diagram of a family of one-dimensional nearest-neighbor tight-binding models with an exact mobility edge
Long-Yan Gong(巩龙延), Xiao-Xin Zhao(赵小新). Chin. Phys. B, 2017, 26(7): 077202.
[11] Uncertainties of clock and shift operators for an electron in one-dimensional nonuniform lattice systems
Long-Yan Gong(巩龙延), You-Gen Ding(丁友根), Yong-Qiang Deng(邓永强). Chin. Phys. B, 2017, 26(11): 117201.
[12] Disordered quantum walks in two-dimensional lattices
Zhang Rong(张融), Xu Yun-Qiu(徐韵秋), Xue Peng(薛鹏). Chin. Phys. B, 2015, 24(1): 010303.
[13] Switching properties of bi-OPE-monothiol molecular junctions: Substituent effects and improvement of open-close ratio
Fu Xiao-Xiao (傅潇潇), Zhang Li-Xia (张丽霞), Li Zong-Liang (李宗良), Wang Chuan-Kui (王传奎). Chin. Phys. B, 2013, 22(2): 028504.
[14] Transport dynamics of an interacting binary Bose–Einstein condensate in an incommensurate optical lattice
Cui Guo-Dong (崔国栋), Sun Jian-Fang (孙剑芳), Jiang Bo-Nan (姜伯楠), Qian Jun (钱军), Wang Yu-Zhu (王育竹). Chin. Phys. B, 2013, 22(10): 100501.
[15] Measurement accuracy analysis of the free carrier absorption determination of the electronic transport properties of silicon wafers
Zhang Xi-Ren(张希仁), Gao Chun-Ming(高椿明), Zhou Ying(周鹰), and Wang Zhan-Ping(王占平). Chin. Phys. B, 2011, 20(6): 068105.
No Suggested Reading articles found!