Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 090307    DOI: 10.1088/1674-1056/ad5c3b
GENERAL Prev   Next  

Variational data encoding and correlations in quantum-enhanced machine learning

Ming-Hao Wang(王明浩)1,† and Hua Lü(吕桦)2,‡
1 School of Physics, Hubei University, Wuhan 430062, China;
2 School of Science, Hubei University of Technology, Wuhan 430068, China
Abstract  Leveraging the extraordinary phenomena of quantum superposition and quantum correlation, quantum computing offers unprecedented potential for addressing challenges beyond the reach of classical computers. This paper tackles two pivotal challenges in the realm of quantum computing: firstly, the development of an effective encoding protocol for translating classical data into quantum states, a critical step for any quantum computation. Different encoding strategies can significantly influence quantum computer performance. Secondly, we address the need to counteract the inevitable noise that can hinder quantum acceleration. Our primary contribution is the introduction of a novel variational data encoding method, grounded in quantum regression algorithm models. By adapting the learning concept from machine learning, we render data encoding a learnable process. This allowed us to study the role of quantum correlation in data encoding. Through numerical simulations of various regression tasks, we demonstrate the efficacy of our variational data encoding, particularly post-learning from instructional data. Moreover, we delve into the role of quantum correlation in enhancing task performance, especially in noisy environments. Our findings underscore the critical role of quantum correlation in not only bolstering performance but also in mitigating noise interference, thus advancing the frontier of quantum computing.
Keywords:  quantum machine learning      variational data encoding      quantum correlation  
Received:  16 March 2024      Revised:  23 June 2024      Accepted manuscript online:  27 June 2024
PACS:  03.67.-a (Quantum information)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12105090 and 12175057).
Corresponding Authors:  Ming-Hao Wang, Hua Lu     E-mail:  wangmh@hubu.edu.cn;lvhuahg@163.com

Cite this article: 

Ming-Hao Wang(王明浩) and Hua Lü(吕桦) Variational data encoding and correlations in quantum-enhanced machine learning 2024 Chin. Phys. B 33 090307

[1] Nielsen M A and Chuang I L 2010 Quantum computation and quantum information: 10th anniversary edition (Cambridge University Press)
[2] Shor P W 1997 SIAM J. Comput. 26 1484
[3] Harrow A W, Hassidim A and Lloyd S 2009 Phys. Rev. Lett. 103 150502
[4] Preskill J 2018 Quantum 2 79
[5] Bharti K, Cervera-Lierta A, Kyaw T H, Haug T,Alperin-Lea S, Anand A, Degroote M, Heimonen H, Kottmann J S, Menke T, Mok W K, Sim S, Kwek L and Aspuru-Guzik A 2022 Rev. Mod. Phys. 94 015004
[6] Callison A and Chancellor N 2022 Phys. Rev. A 106 010101
[7] Cerezo M, Arrasmith A, Babbush R, Benjamin S C, Endo S, Fujii K, McClean J R, Mitarai K, Yuan X, Cincio L and Coles P J 2021 Nat. Rev. Phys. 3 625
[8] Zhang S X, Wan Z Q, Lee C K, Hsieh C Y, Zhang S and Yao H 2022 Phys. Rev. Lett. 128 120502
[9] Jones T, Endo S, McArdle S, Yuan X and Benjamin S C 2019 Phys. Rev. A 99 062304
[10] Liu H L, Wu Y S, Wan L C, Pan S J, Qin S J, Gao F and Wen Q Y 2021 Phys. Rev. A 104 022418
[11] Xu X, Sun J, Endo S, Li Y, Benjamin S C and Yuan X 2021 Sci. Bull. 66 2181
[12] Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow J M and Gambetta J M 2017 Nature 549 242
[13] Chalumuri A, Kune R and Manoj B S 2021 Quantum Inf. Process. 20 119
[14] Jordan M I and Mitchell T M 2015 Science 349 255
[15] Benedetti M, Lloyd E, Sack S and Fiorentini M 2019 Quantum Sci. Technol. 4 043001
[16] Du Y, Hsieh M H, Liu T and Tao D 2020 Phys. Rev. Res. 2 033125
[17] Nghiem N A, Chen S Y C and Wei T C 2021Phys. Rev. Res. 3 033056
[18] LaRose R and Coyle B 2020 Phys. Rev. A 102 032420
[19] Schuld M, Bocharov A, Svore K M and Wiebe N 2020 Phys. Rev. A 101 032308
[20] Dallaire-Demers P L and Killoran N 2018 Phys. Rev. A 98 012324
[21] Lloyd S and Weedbrook C 2018 Phys. Rev. Lett. 121 040502
[22] Gao X, Anschuetz E R, Wang S T, Cirac J I and Lukin M D 2022 Phys. Rev. X12 021037
[23] Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N and Lloyd S 2017 Nature 549 195
[24] Dunjko V, Taylor J M and Briegel H J. 2016 Phys. Rev. Lett. 117 130501
[25] Dunjko V and Briegel H J 2018 Rep. Prog. Phys 81 074001
[26] Ma Y G, Pang L G, Wang R and Zhou K. 2023 Chin. Phys. Lett. 40 122101
[27] Bai S C, Tang Y C and Ran S J 2022 Chin. Phys. Lett. 39 100701
[28] Xie J and Dong Y 2023 Chin. Phys. B 32 120302
[29] Wang X Y, Dong C and Liu X 2024 Chin. Phys. Lett. 41 031201
[30] Havlíček V, Córcoles A D, Temme K, Harrow A W, Kandala A, Chow J M and Gambetta J M 2019 Nature 567 209
[31] Schuld M and Killoran N 2019 Phys. Rev. Lett. 122 040504
[32] Giovannetti, V, Lloyd S and Maccone L 2008 Phys. Rev. Lett. 16 160501
[33] Mitarai K, Negoro M, Kitagawa M and Fujii K 2018 Phys. Rev. A 98 032309
[34] Pérez-Salinas A, Cervera-Lierta A, Gil-Fuster E and Latorre J I 2020 Quantum 4 226
[35] Schuld M, Sweke R and Meyer J J 2021 Phys. Rev. A 103 032430
[36] Jerbi S, Fiderer L J, Nautrup H P, Kübler J M, Briegel H J and Dunjko V 2023 Nat. Commun. 14 517
[37] Hofmann T, Schölkopf B and Smola A J 2008 Ann. Statist. 36 1171
[38] Lloyd S, Schuld M, Ijaz A, Izaac J and Killoran N 2020 arXiv: 2001.03622[quant-ph]
[39] Hubregtsen T, Wierichs D, Gil-Fuster E, Derks P J H S, Faehrmann P K and Meyer J J 2022 Phys. Rev. A 106 042431
[40] Buhrman H, Cleve R, Watrous J and Wolf R. 2001 Phys. Rev. Lett. 87 167902
[41] Garcia-Escartin J C and Chamorro-Posada P 2013 Phys. Rev. A 87 052330
[42] Zhao T H, Wang M H and Zhou B 2021 Quantum Inf. Process. 20 1
[43] Tang H L, Shkolnikov V O, Barron G S, Grimsley H R, Mayhall N J, Barnes E and Economou S E 2021 PRX Quantum 2 020310
[44] Du Y, Huang T, You S, et al. 2022 npj Quantum Inf. 8 62
[45] Guo X, Muta T and Zhao J 2024 arXiv: 2405.05021[quant-ph]
[46] Schuld M, Bergholm V, Gogolin C, Izaac J and Killoran N 2019 Phys. Rev. A 99 032331
[47] Kingma D and Ba J 2014 arXiv: 1412.6980[cs.LG]
[48] Bergholm V, Izaac J, Schuld M, et al. 2018 arXiv: 1811.04968[quantph].
[49] Antipov A V, Kiktenko E O and Fedorov A K 2022 PLOS One 17 1
[50] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865-
[51] Vedral V 2014 Nat. Phys. 10 256
[52] Erhard M, Krenn M and Zeilinger A 2020 Nat. Rev. Phys. 2 365
[53] Köhnke S, Agudelo E, Schünemann M, Schlettwein O, Vogel W, Sperling J and Hage B 2021 Phys. Rev. Lett. 126 170404
[54] Modi K, Brodutch A, Cable H, Paterek T and Vedral V 2012 Rev. Mod. Phys. 84 1655
[55] Adesso G, Bromley T R and Cianciaruso M 2016 J. Phys. A: Math. Theor. 49 473001
[56] Fontana E, Fitzpatrick N, Ramo D M, Duncan R and Rungger I 2021 Phys. Rev. A 104 022403
[1] Quantum correlations and entanglement in coupled optomechanical resonators with photon hopping via Gaussian interferometric power analysis
Y. Lahlou, B. Maroufi, and M. Daoud. Chin. Phys. B, 2024, 33(5): 050303.
[2] Analysis of learnability of a novel hybrid quantum—classical convolutional neural network in image classification
Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Shuang Wang(王爽), Rui Wang(王睿), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2024, 33(4): 040303.
[3] Quantum correlation enhanced bound of the information exclusion principle
Jun Zhang(张钧), Kan He(贺衎), Hao Zhang(张昊), and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(9): 090301.
[4] A new method of constructing adversarial examples for quantum variational circuits
Jinge Yan(颜金歌), Lili Yan(闫丽丽), and Shibin Zhang(张仕斌). Chin. Phys. B, 2023, 32(7): 070304.
[5] Controlling stationary one-way steering in a three-level atomic ensemble
Jie Peng(彭洁), Jun Xu(徐俊), Hua-Zhong Liu(刘华忠), and Zhang-Li Lai(赖章丽). Chin. Phys. B, 2023, 32(12): 120305.
[6] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[7] Quantum partial least squares regression algorithm for multiple correlation problem
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Yuan Tian(田源). Chin. Phys. B, 2022, 31(3): 030304.
[8] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[9] Quantum correlation and entropic uncertainty in a quantum-dot system
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2022, 31(10): 100303.
[10] Effects of initial states on the quantum correlations in the generalized Grover search algorithm
Zhen-Yu Chen(陈祯羽), Tian-Hui Qiu(邱田会), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2021, 30(8): 080303.
[11] Quantum coherence and correlation dynamics of two-qubit system in spin bath environment
Hao Yang(杨豪), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2020, 29(4): 040303.
[12] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
[13] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[14] Relations between tangle and I concurrence for even n-qubit states
Xin-Wei Zha(查新未), Ning Miao(苗宁), Ke Li(李轲). Chin. Phys. B, 2019, 28(12): 120304.
[15] Monogamy quantum correlation near the quantum phase transitions in the two-dimensional XY spin systems
Meng Qin(秦猛), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2018, 27(6): 060301.
No Suggested Reading articles found!