Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 097201    DOI: 10.1088/1674-1056/ad5af1
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Current-perpendicular-to-plane transport properties of 2D ferromagnetic material CrTe2

Jin Wang(王瑾)1,2, Yu Liu(刘宇)1,2, Taikun Wang(王太坤)1,2, Yongkang Xu(徐永康)1,2, Shuanghai Wang(王双海)1,2, Kun He(何坤)1,2, Yafeng Deng(邓亚峰)1,2, Pengfei Yan(闫鹏飞)1,2, and Liang He(何亮)1,2,†
1 School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China;
2 State Key Laboratory of Spintronics, Nanjing University, Suzhou 215163, China
Abstract  Heterostructures of van der Waals (vdW) ferromagnetic materials have become a focal point in research of low-dimensional spintronic devices. The current direction in spin valves is commonly perpendicular to the plane (CPP). However, the transport properties of the CPP mode remain largely unexplored. In this work, current-in-plane (CIP) mode and CPP mode for CrTe$_{2}$ thin films are carefully studied. The temperature-dependent longitudinal resistance transitions from metallic (CIP) to semiconductor behavior (CPP), with the electrical resistivity of CPP increased by five orders of magnitude. More importantly, the transport properties of the CPP can be categorized into a single-gap tunneling-through model with the activation energy ($E_{\rm a}$) of $\sim$ 1.34 meV/gap at 300-150 K, the variable range hopping model with a linear negative magnetoresistance at 150-20 K, and weak localization region with a nonlinear magnetic resistance below 20 K. This study explores the vertical transport in CrTe$_{2}$ materials for the first time, contributing to understand its unique properties and to pave the way for its potential in spin valve devices.
Keywords:  2D vdW      CrTe$_{2}$      current-perpendicular-to-plane      negative magnetic resistance  
Received:  06 May 2024      Revised:  20 June 2024      Accepted manuscript online:  24 June 2024
PACS:  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  75.50.-y (Studies of specific magnetic materials)  
  81.05.-t (Specific materials: fabrication, treatment, testing, and analysis)  
  85.70.-w (Magnetic devices)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12241403 and 61974061) and the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20140054).
Corresponding Authors:  Liang He     E-mail:  heliang@nju.edu.cn

Cite this article: 

Jin Wang(王瑾), Yu Liu(刘宇), Taikun Wang(王太坤), Yongkang Xu(徐永康), Shuanghai Wang(王双海), Kun He(何坤), Yafeng Deng(邓亚峰), Pengfei Yan(闫鹏飞), and Liang He(何亮) Current-perpendicular-to-plane transport properties of 2D ferromagnetic material CrTe2 2024 Chin. Phys. B 33 097201

[1] Lin Z, Peng Y, Wu B, Wang C S, Luo Z C and Yang J B 2022 Chin. Phys. B 8 087506
[2] Arai M, Moriya R and Yabuki N 2015 Appl. Phys. Lett. 107 103107
[3] Tian M, Zhu Y and Jalali M 2021 Front. Nanotechnol. 3 732916
[4] Li Q, Yang M M, Gong C, et al. 2018 Nano Lett. 9 5974
[5] Wang H D, Lei P H and Mao X Y 2022 Chin. Phys. Lett. 39 047601
[6] Li H, Ruan S C and Zeng Y J 2019 Adv. Mater. 27 1900065
[7] Khajetoorians A A, Wiebe J and Chilian B 2011 Science 6033 1062
[8] Lin Z Z and Chen X 2020 Adv. Electron. Mater. 6 1900968
[9] Zhao B, Ngaloy R, Ghosh S, et al. 2023 Adv. Mater. 35 2209113
[10] Yang S X, Zhang T L and Jiang C B 2021 Adv. Sci. 8 2002488
[11] Wu X, Meng H, Kong F, Zhang H Y, Bai Y J and Xu N 2020 Phys. Rev. B 101 125406
[12] Hu C, Yan F, Li Y C and Wang K Y 2021 Chin. Phys. B 9 097505
[13] Jin W, Zhang G, Wu H, Yang L, Zhang W F and Chang H X 2023 Nanoscale 15 5371
[14] Niu Y T, Lu X and Shi Z T 2021 Chin. Phys. B 30 117506
[15] Lin H, Yan F, Hu C, Lv Q S, Zhu W K, Wang Z, Wei Z M, Chang K and Wang K Y 2020 ACS Appl. Mater. Interfaces 12 43921
[16] Wen J, Gaojie Z and Hao W 2023 Chin. Phys. Lett. 40 057301
[17] Wang Z, Sapkota D, Taniguchi T, Watanabe K J, Mandrus D and Morpurgo A F 2018 Nano Lett. 18 4303
[18] Marian D, Soriano D and Cannavó E 2023 NPJ 2D Mater. Appl. 1 42
[19] Roychowdhury A, Dalui T K and Ghose P K 2022 J. Solid State Chem. 312 123106
[20] Klein D R, MacNeill D and Lado J L 2018 Science 360 1218
[21] Sun Y, Yan P and Ning J 2021 AIP Adv. 11 035138
[22] Zhang X, Lu Q, Liu W, et al. 2021 Nat. Commun. 12 2492
[23] Zhang H, Chen R, Zhai K, et al. 2020 Phys. Rev. B 102 064417
[24] Ren Q D, Lai K, Chen J H, Yu X X and Dai J Y 2023 Chin Phys. B 32 027201
[25] Lasek K, Coelho P M, Zberecki K, Xin Y, Kolekar S K, Li J F and Batzill M 2020 ACS Nano 14 8473
[26] Sun X, Li W, Wang X, et al. 2020 Nano Res. 13 3358
[27] Xian J J, Wang C, Nie J H and Li R 2022 Nat. Commun. 13 257
[28] Feng D, Shen Z, Xue Y and Guan Z 2023 Nanoscale 15 1561
[29] Han X, Guo Z, Chen L, Cao C, Sun F, Wang G and Yuan W X 2021 Mater. Chem. Front. 5 8275
[30] Hu L, Cao L, Li L, Duan J M, Liao X Q, Long F C, Zhou J, Xiao Y G, Zeng Y J and Zhou S Q 2021 Mater. Horiz. 8 1286
[31] Bogomolnyd E B and Rouben D C 1999 Europhys. J. B 9 695
[32] Huang C, Liu B, Jiang L, Pan Y F, Fan J Y, Shi D N, Ma C L, Luo Q and Zhu Y 2023 Phys. Rev. B 108 094433
[33] Dau M T, Vergnaud C, Marty A, Rortais F, Beigné C, Boukari H, Bellet-Amalric E, Guigoz V, Renault O, Alvarez C, Okuno H, Pochet P and Jamet M 2017 Appl. Phys. Lett. 110 011909
[34] Sivan U, Entin-Wohlman O and Imry Y 1988 Phys. Rev. Lett. 60 1566
[35] Honglei F, Yong L and Shi Y G 2022 Chin. Phys. Lett. 39 077501
[36] Zhang X Q, Ambhire S C, Lu Q S, et al. 2021 ACS Nano 15 15710
[37] Zhu H Y, Gao Y F, Hou Y S, Gui Z G and Huang L 2023 Phys. Rev. B 108 144404
[38] Dau, M T, Vergnaud C, Marty A, et al. 2017 Appl. Phys. Lett. 110 4973519
[39] Zhang X, Woods J M, Cha J J and Shi X Y 2020 Phys. Rev. B 102 115161
[40] Sultana R, Gurjar G, Neha P, et al. 2018 J. Supercond. Novel Magn. 31 2287
[41] Sharma D, Rani P, Maheshwari P K, Nagpal V, Meena R S, Islam S S, Patnaik S and Awana V P S 2020 AIP Conf. Proc. 2220 110028
[1] Magnetic domain structures in ultrathin Bi2Te3/CrTe2 heterostructures
Tirui Xia(夏体瑞), Xiaotian Yang(杨笑天), Yifan Zhang(张逸凡), Xinqi Liu(刘馨琪), Xinyu Cai(蔡新雨), Chang Liu(刘畅), Qi Yao(姚岐), Xufeng Kou(寇煦丰), and Wenbo Wang(王文波). Chin. Phys. B, 2024, 33(8): 087504.
[1] HUANG MAO (黄矛), LIU KE-LING (刘克玲). NON-BOLTZMANN ENERGY LEVEL DISTRIBUTIONS OF ARGON ATOMS IN THE INDUCTIVELY COUPLED ARGON PLASMA[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 11 -18 .
[2] ZHOU HAI-JUN (周海军), XU XIANG-YUAN (许祥源), HUANG WEN (黄雯), LI LIANG-QUAN (李良权), CHEN DIE-YAN (陈瓞延). STUDY OF HIGH-LYING EXCITED STATES OF RARE-EARTH ELEMENT Dy BY LASER RESONANCE IONIZATION SPECTROSCOPY[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 19 -26 .
[3] FAN HONG-CHANG (范宏昌), ZHANG YI-TONG (张贻瞳), JIN XIN (金新), TONG HONG-WU (童红武), YAO XI-XIAN (姚希贤). THERMALLY ACTIVATED FLUX MOTION IN HIGH-Tc SUPERCONDUCTORS[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(2): 123 -129 .
[4] JIN YING (金鹰), ZHANG SHU-LIN (张树霖), QIN GUO-GANG (秦国刚), FAN YONG-LIANG (樊永良), ZHOU GOU-LIANG (周国良), YU MING-REN (俞鸣人). RAMAN SCATTERING INTENSITIES OF FOLDED LONGITUDINAL ACOUSTIC PHONONS IN GexSi1-x/Si SUPERLATTICES[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(2): 130 -137 .
[5] ZHANG TIAN-CAI (张天才), XIE CHANG-DE (谢常德), PENG KUN-CHI (彭堃墀). A FULL QUANTUM THEORY OF THE THREE-MODE INTERACTIONS INSIDE AN OPO CAVITY[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(2): 94 -103 .
[6] HU CHENG-ZHENG (胡承正), DING DI-HUA (丁棣华), YANG WEN-GE (杨文革). EXPRESSION OF THE ELASTIC ENERGY IN TWO-DIMENSIONAL QUASICRYSTALS[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(1): 42 -47 .
[7] JIANG WEI-LIN (江伟林), ZHENG ZONG-SHUANG (郑宗爽), ZHU PEI-RAN (朱沛然). Li ION BACKSCATTERING STUDY ON HIGH-Tc YBaCuO AND GdBaCuO SUPERCONDUCTOR FILMS[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(1): 65 -71 .
[8] LIU LIN (柳林), DONG YUAN-DA (董远达), HE YI-ZHEN (何怡贞). ATOMIC SHORT-RANGE ORDER OF AMORPHOUS Ta-Cu ALLOYS PREPARED BY MECHANICAL ALLOYING[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(10): 731 -736 .
[9] XU SHI-HONG (徐世红), XU PENG-SHOU (徐彭寿), LI JIA (李嘉), MA MAO-SHENG (麻茂生), ZHANG YU-HENG (张裕恒), XU ZHEN-JIA (许振嘉). A STUDY ON ABSORPTION OF Na ATOMS ON Si(100) 2×1 SURFACES WITH DV-X$\alpha$ METHOD[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(10): 745 -753 .
[10] CHEN JIAN-HUA (陈健华), CHENG XIANG-AI (程香爱), GAO YI-DONG (高一东). A RECURRENT FORMULA FOR $\alpha$-ROW PARTITION AND THE CALCULATIONS OF THE MULTIPLICITIES OF COUPLING STATES IN SHELL-MODEL[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(12): 890 -897 .