INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Spin pumping at the Co2FeAl0.5Si0.5/Pt interface |
Wu Yong (吴勇)a, Zhao Yue-Lei (赵月雷)a b, Xiong Qiang (熊强)a, Xu Xiao-Guang (徐晓光)a, Sun Young (孙阳)b, Zhang Shi-Qing (张十庆)c, Jiang Yong (姜勇)a |
a State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; b Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; c Chongqing Materials Research Institute, Chongqing 400700, China |
|
|
Abstract Spin pumping at the Co2FeAl0.5Si0.5/Pt and Pt/Co2FeAl0.5Si0.5 interfaces has been studied by ferromagnetic resonance technology (FMR). The spin mixing conductance of the Co2FeAl0.5Si0.5/Pt and Pt/Co2FeAl0.5Si0.5 interfaces was determined to be 3.7×1019 m-2 and 2.1×1019 m-2 by comparing the Gilbert damping in a Co2FeAl0.5Si0.5 single film, Co2FeAl0.5Si0.5/Pt bilayer film and a Pt/Co2FeAl0.5Si0.5/Pt trilayer film. Spin pumping is more efficient in the Co2FeAl0.5Si0.5/Pt bilayer film than in permalloy/Pt bilayer film.
|
Received: 29 March 2013
Revised: 09 May 2013
Accepted manuscript online:
|
PACS:
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
07.57.Pt
|
(Submillimeter wave, microwave and radiowave spectrometers; magnetic resonance spectrometers, auxiliary equipment, and techniques)
|
|
46.40.Ff
|
(Resonance, damping, and dynamic stability)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB932702), the National Natural Science Foundation of China (Grant Nos. 51271020, 51071022, and 11174031), the Program for Changjiang Scholars and Innovative Research Team in University, China (PCSIRT), the Beijing Nova Program, China (Grant No. 2011031), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China. |
Corresponding Authors:
Xu Xiao-Guang
E-mail: xgxu@ustb.edu.cn
|
Cite this article:
Wu Yong (吴勇), Zhao Yue-Lei (赵月雷), Xiong Qiang (熊强), Xu Xiao-Guang (徐晓光), Sun Young (孙阳), Zhang Shi-Qing (张十庆), Jiang Yong (姜勇) Spin pumping at the Co2FeAl0.5Si0.5/Pt interface 2014 Chin. Phys. B 23 018503
|
[1] |
Zutic I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
|
[2] |
Maekawa E 2006 Concept in Spin Electronics (Oxford: Oxford University)
|
[3] |
Jedema F J, Filip A T and van Wees B J 2001 Nature 410 345
|
[4] |
Takahashi S and Maekawa 2003 Phys. Rev. B 67 052409
|
[5] |
Fukuma Y, Wang L, Idzuchi H, Takahashi S and Maekawa S 2011 Nat. Mater. 10 527
|
[6] |
Yuan S P, Shen C, Zheng H Z, Liu Q, Wang L G, Meng K K and Zhao J H 2013 Chin. Phys. B 22 047202
|
[7] |
Hirsch J E 1999 Phys. Rev. Lett. 83 1834
|
[8] |
Brüne C, Roth A, Novik E G, König M, Buhmann H, Hankiewicz E M, Hanke W, Sinova J and Molenkamp L W 2010 Nat. Phys. 6 448
|
[9] |
Nakayama H, Ando K, Harii K, Kajiwara Y, Yoshino T, Uchida K and Saitoh E 2010 IEEE Trans. Magn. 46 2202
|
[10] |
Heinrich B, Burrowes C, Montoya E, Kardasz B, Girt E, Song Y Y, Sun Y Y and Wu M Z 2011 Phys. Rev. Lett. 107 066604
|
[11] |
Charilaou M, Lenz K and Kuch W 2010 J. Magn. Magn. Mater. 322 2065
|
[12] |
Shaw J M, Nembach H T and Silva T J 2012 Phys. Rev. B 85 054412
|
[13] |
Uchida K, Ota T, Harii K, Takahashi S, Maekawa S, Fujikawa Y and Saitoh E 2010 Solid State Commun. 150 524
|
[14] |
Bosu S, Sakuraba Y, Uchida K, Saito K, Ota T, Saitoh E and Takanashi K 2011 Phys. Rev. B 83 224401
|
[15] |
Vonsovskii S V 1996 Ferromagnetic Resonance (Oxford: Pergamon Press)
|
[16] |
Foros J, Woltersdorf G, Heinrich B and Brataas A 2005 J. Appl. Phys. 97 10A714
|
[17] |
Tezuka N, Ikeda N, Mitsuhashi F and Sugimoto S 2008 Appl. Phys. Lett. 94 162504
|
[18] |
Li X Q, Xu X G, Wang S, Wu Y, Zhang D L, Miao J and Jiang Y 2012 Chin. Phys. B 21 107307
|
[19] |
Wang S, Li X Q, Bai L J, Xu X G, Miao J and Jiang Y 2013 Chin. Phys. B 22 057305
|
[20] |
Sato J, Oogane M, Naganuma H and Ando Y 2011 Appl. Phys. Express 4 113005
|
[21] |
Chudo H, Ando K, Saito K, Okayasu S, Haruki R, Sakuraba Y, Yasuoka H, Takanashi K and Saitoh E 2011 J. Appl. Phys. 109 073915
|
[22] |
Czeschka F D, Dreher L, Brandt M S, Weiler M, Althammer M, Imort I-M, Reiss G, Thomas A, Schoch W, Limmer W, Huebl H, Gross R and Goennenwein S T B 2011 Phys. Rev. Lett. 107 046601
|
[23] |
Fecher G H and Felser C 2007 J. Phys. D: Appl. Phys. 40 1582
|
[24] |
Mizukami S, Ando Y and Miyazaki T 2001 Jpn. J. Appl. Phys. 40 580
|
[25] |
Oogane M, Yilgin R, Shinano M, Yakata S, Sakuraba Y, Ando Y and Miyazaki T 2007 J. Appl. Phys. 101 09J501
|
[26] |
Mizukami S, Watanabe D, Oogane M, Ando Y, Miura Y, Shirai M and Miyazaki T 2009 J. Appl. Phys. 105 07D306
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|