Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 046702    DOI: 10.1088/1674-1056/26/4/046702
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Superexchange-mediated magnetization dynamics with ultracold alkaline-earth atoms in an optical lattice

Shaobing Zhu(朱少兵)1,2, Jun Qian(钱军)1, Yuzhu Wang(王育竹)1
1 Key Laboratory for Quantum Optics and Center for Cold Atom Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Superexchange and inter-orbital spin-exchange interactions are key ingredients for understanding (orbital) quantum magnetism in strongly correlated systems and have been realized in ultracold atomic gases. Here we study the spin dynamics of ultracold alkaline-earth atoms in an optical lattice when the two exchange interactions coexist. In the superexchange interaction dominating regime, we find that the time-resolved spin imbalance shows a remarkable modulated oscillation, which can be attributed to the interplay between local and nonlocal quantum mechanical exchange mechanisms. Moreover, the filling of the long-lived excited atoms affects the collapse and revival of the magnetization dynamics. These observations can be realized in state-dependent optical lattices combined with the state-of-the-art advances in optical lattice clock spectroscopy.

Keywords:  alkaline-earth atoms      spin dynamics      spin-exchange      superexchange  
Received:  06 December 2016      Revised:  24 January 2017      Accepted manuscript online: 
PACS:  67.85.Lm (Degenerate Fermi gases)  
  34.50.Cx (Elastic; ultracold collisions)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301504).

Corresponding Authors:  Yuzhu Wang     E-mail:  yzwang@mail.shcnc.ac.cn

Cite this article: 

Shaobing Zhu(朱少兵), Jun Qian(钱军), Yuzhu Wang(王育竹) Superexchange-mediated magnetization dynamics with ultracold alkaline-earth atoms in an optical lattice 2017 Chin. Phys. B 26 046702

[1] Bloch I, Dalibard J, and Zwerger W 2008 Rev. Mod. Phys. 80 885
[2] Lewenstein M, Sanpera A and Ahufinger V 2012 Ultracold atoms in optical lattices: simulating quantum many-body systems (Oxford: Oxford University Press), ISBN: 0199573123
[3] Bloch I, Dalibard J and Nascimbene S 2012 Nat. Phys. 8 267
[4] Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108
[5] Greiner M, Mandel O, Esslinger T, Hänsch T W and Bloch I 2002 Nature 415 39
[6] Jaksch D and Zoller P 2005 Ann. Phys. 315 52
[7] Jördens R, Strohmaier N, Günther K, Moritz H and Esslinger T 2008 Nature 455 204
[8] Schneider U, Hackermüller L, Will S, Best T, Bloch I, Costi T A, Helmes R W, Rasch D and Rosch A 2008 Science 322 1520
[9] Esslinger T 2010 Ann. Rev. Condens. Matter Phys. 1 129
[10] Duan L M, Demler E and Lukin M D 2003 Phys. Rev. Lett. 91 090402
[11] Kuklov A B and Svistunov B V 2003 Phys. Rev. Lett. 90 100401
[12] Altman E, Hofstetter W, Demler E and Lukin M D 2003 New J. Phys. 5 113
[13] Mandel O, Greiner M, Widera A, Rom T, Hansch T W and Bloch I 2003 Nature 425 937
[14] Anderlini M, Lee P J, Brown B L, Sebby-Strabley J, Phillips W D and Porto J V 2007 Nature 448 452
[15] Kaufman A M, Lester B J, Foss-Feig M, Wall M L, Rey A M and Regal C A 2015 Nature 527 208
[16] Yan B, Moses S A, Gadway B, Covey J P, Hazzard K R A, Rey A M, Jin D S and Ye J 2013 Nature 501 521
[17] Rey A M, Gritsev V, Bloch I, Demler E and Lukin M D 2007 Phys. Rev. Lett. 99 140601
[18] Trotzky S, Cheinet P, Fölling S, Feld M, Schnorrberger U, Rey A M, Polkovnikov A, Demler E A, Lukin M D and Bloch I 2008 Science 319 295
[19] Chen Y A, Nascimbene S, Aidelsburger M, Atala M, Trotzky S and Bloch I 2011 Phys. Rev. Lett. 107 210405
[20] Brown R C, Wyllie R, Koller S B, Goldschmidt E A, Foss-Feig M and Porto J V 2015 Science 348 540
[21] Gorshkov A V, Hermele M, Gurarie V, Xu C, Julienne P S, Ye J, Zoller P, Demler E, Lukin M D and Rey A M 2010 Nat. Phys. 6 289
[22] Cazalilla M A and Rey A M 2014 Rep. Prog. Phys. 77
[23] Zhang X, Bishof M, Bromley S L, Kraus C V, Safronova M S, Zoller P, Rey A M and Ye J 2014 Science 345 1467
[24] Scazza F, Höfrichter C, Hofer M, De Groot P C, Bloch I and Fölling S 2014 Nat. Phys. 10 779
[25] Cappellini G, Mancini M, Pagano G, Lombardi P, Livi L, de Cumis M S, Cancio P, Pizzocaro M, Calonico D, Levi F, Sias C, Catani J, Inguscio M and Fallani L 2014 Phys. Rev. Lett. 113 120402
[26] Hewson A C 1993 The Kondo problem to heavy fermions (Cambridge: Cambridge University Press), ISBN: 0521363829
[27] Coleman P 2015 Introduction to many-body physics (Cambridge: Cambridge University Press) Chap. 16-17, ISBN: 0521864887
[28] Foss-Feig M, Hermele M and Rey A M 2010 Phys. Rev. A 82 053624
[29] Hazzard K R A, Gurarie V, Hermele M and Rey A M 2012 Phys. Rev. A 85 041604
[30] Hofrichter C, Riegger L, Scazza F, Höfer M, Fernandes D R, Bloch I and Fölling S 2016 Phys. Rev. X 6 021030
[31] Auerbach A 1994 Interacting electrons and quantum magnetism (New York: Springer-Verlag) pp. 16-18, ISBN: 0387942866
[32] Boyd M M, Zelevinsky T, Ludlow A D, Blatt S, Zanon-Willette T, Foreman S M and Ye J 2007 Phys. Rev. A 76 022510
[33] Zhang R, Cheng Y T, Zhai H and Zhang P 2015 Phys. Rev. Lett. 115 135301
[34] Pagano G, Mancini M, Cappellini G, Livi L, Sias C, Catani J, Inguscio M and Fallani L 2015 Phys. Rev. Lett. 115 265301
[35] Höfer M, Riegger L, Scazza F, Hofrichter C, Fernandes D R, Parish M M, Levinsen J, Bloch I and Fölling S 2015 Phys. Rev. Lett. 115 265302
[1] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[2] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[3] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[4] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[5] Crystal growth and magnetic properties of quantum spin liquid candidate KErTe2
Weiwei Liu(刘维维), Dayu Yan(闫大禹), Zheng Zhang(张政), Jianting Ji(籍建葶), Youguo Shi(石友国), Feng Jin(金峰), and Qingming Zhang(张清明). Chin. Phys. B, 2021, 30(10): 107504.
[6] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
[7] Spin-exchange relaxation of naturally abundant Rb in a K-Rb-21Ne self-compensated atomic comagnetometer
Yan Lu(卢妍), Yueyang Zhai(翟跃阳), Yong Zhang(张勇), Wenfeng Fan(范文峰), Li Xing(邢力), Wei Quan(全伟). Chin. Phys. B, 2020, 29(4): 043204.
[8] Miniature quad-channel spin-exchange relaxation-free magnetometer for magnetoencephalography
Jian-Jun Li(李建军), Peng-Cheng Du(杜鹏程), Ji-Qing Fu(伏吉庆), Xu-Tong Wang(王旭桐), Qing Zhou(周庆), Ru-Quan Wang(王如泉). Chin. Phys. B, 2019, 28(4): 040703.
[9] Low drift nuclear spin gyroscope with probe light intensity error suppression
Wenfeng Fan(范文峰), Wei Quan(全伟), Feng Liu(刘峰), Lihong Duan(段利红), Gang Liu(刘刚). Chin. Phys. B, 2019, 28(11): 110701.
[10] Transverse relaxation determination based on light polarization modulation for spin-exchange relaxation free atomic magnetometer
Xue-Jing Liu(刘学静), Ming Ding(丁铭), Yang Li(李阳), Yan-Hui Hu(胡焱晖), Wei Jin(靳伟), Jian-Cheng Fang(房建成). Chin. Phys. B, 2018, 27(7): 073201.
[11] Parameter analysis for a nuclear magnetic resonance gyroscope based on bf133Cs-129Xe/131Xe
Da-Wei Zhang(张大伟), Zheng-Yi Xu(徐正一), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2017, 26(2): 023201.
[12] Spin dynamics of the potassium magnetometer in spin-exchange relaxation free regime
Ji-Qing Fu(伏吉庆), Peng-Cheng Du(杜鹏程), Qing Zhou(周庆), Ru-Quan Wang(王如泉). Chin. Phys. B, 2016, 25(1): 010302.
[13] Manipulating magnetic anisotropy and ultrafast spin dynamics of magnetic nanostructures
Cheng Zhao-Hua (成昭华), He Wei (何为), Zhang Xiang-Qun (张向群), Sun Da-Li (孙达力), Du Hai-Feng (杜海峰), Wu Qiong (吴琼), Ye Jun (叶军), Fang Ya-Peng (房亚鹏), Liu Hao-Liang (刘郝亮). Chin. Phys. B, 2015, 24(7): 077505.
[14] In-situ measurement of magnetic field gradient in a magnetic shield by a spin-exchange relaxation-free magnetometer
Fang Jian-Cheng (房建成), Wang Tao (王涛), Zhang Hong (张红), Li Yang (李阳), Cai Hong-Wei (蔡洪炜). Chin. Phys. B, 2015, 24(6): 060702.
[15] Double spin-glass-like behavior and antiferromagnetic superexchange interaction between Fe3+ ions in α-Ga2-xFexO3 (0 ≤ x ≤ 0.4)
Lv Yi-Fei (吕益飞), Xiang Jian-Yong (向建勇), Wen Fu-Sheng (温福昇), Lv Wei-Ming (吕伟明), Hu Wen-Tao (胡文涛), Liu Zhong-Yuan (柳忠元). Chin. Phys. B, 2015, 24(3): 037502.
No Suggested Reading articles found!