Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 074209    DOI: 10.1088/1674-1056/ad3efb
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Wavelength-interval switchable Brillouin-Raman random fiber laser through Brillouin pump manipulation

Yang Li(李阳)1, En-Ming Xu(徐恩明)1, Rui-Jia Chen(陈睿佳)1, Yu-Gang Shee2,‡, and Zu-Xing Zhang(张祖兴)1,†
1 Advanced Photonic Technology Laboratory, College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 Department of Electrical and Electronic Engineering, Lee Kong Chian Faculty of Engineering & Science (LKC FES), Universiti Tunku Abdul Rahman (UTAR) Sungai Long Campus, Malaysia
Abstract  A wavelength-interval switchable Brillouin-Raman random fiber laser (BRRFL) based on Brillouin pump (BP) manipulation is proposed in this paper. The proposed wavelength-interval switchable BRRFL has a full-open cavity configuration, featuring multiwavelength output with wavelength interval of double Brillouin frequency shifts. Through simultaneously injecting the BP light and its first-order stimulated Brillouin-scattered light into the cavity, the laser output exhibits a wavelength interval of single Brillouin frequency shift. The wavelength-interval switching effect can be manipulated by controlling the power of the first-order stimulated Brillouin scattering light. The experimental results show the multiwavelength output can be switched between double Brillouin frequency shift multiwavelength emission with a broad bandwidth of approximately 60 nm and single Brillouin frequency shift multiwavelength emission of 44 nm. The flexible optically controlled random fiber laser with switchable wavelength interval makes it useful for a wide range of applications and holds significant potential in the field of wavelength-division multiplexing optical communication.
Keywords:  wavelength-interval switchable fiber laser      Brillouin fiber laser      stimulated Brillouin-scattered      random fiber laser  
Received:  19 March 2024      Revised:  12 April 2024      Accepted manuscript online:  16 April 2024
PACS:  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.60.Fc (Modulation, tuning, and mode locking)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
Fund: Poject supported by the National Natural Science Foundation of China (Grant Nos. 62175116 and 62311530343) and the Postgraduate Research Innovation Program of Jiangsu Province, China (Grant No. KYCX22 0913).
Corresponding Authors:  Yu-Gang Shee, Zu-Xing Zhang     E-mail:  zxzhang@njupt.edu.cn;sheeyg@utar.edu.my

Cite this article: 

Yang Li(李阳), En-Ming Xu(徐恩明), Rui-Jia Chen(陈睿佳), Yu-Gang Shee, and Zu-Xing Zhang(张祖兴) Wavelength-interval switchable Brillouin-Raman random fiber laser through Brillouin pump manipulation 2024 Chin. Phys. B 33 074209

[1] Turitsyn S K, Babin S A, El-Taher A E, Harper P and Podivilov E V 2010 Nat. Photon. 4 231
[2] Pang M, Bao X Y and Chen L 2013 Opt. Lett. 38 1866
[3] El-Taher A, Harper P, Babin S A, Churkin D, Podivilov E V, AniaCastañón A and Turitsyn S 2011 Opt. Lett. 36 130
[4] Yang Q, Zou H, Shee Y G and Zhang Z 2023 IEEE J. Selec. Top. Quantum Electron. 29 0900106
[5] Wang Z, Wu H, Fan H, Li Y, Yuan Y and Rao Y 2013 Opt. Expess 21 29358
[6] Li Y, Lu P, Bao X and Ou Z 2014 Opt. Lett. 39 2294
[7] Wang L, Dong X, Shum P P and Su H 2014 IEEE Photon. J. 6 1501705
[8] Pang M, Xie S, Bao X, Zhou D, Lu Y and Chen L 2012 Opt. Lett. 37 3129
[9] Pang Y, Xu Y, Zhao X, Qin Z and Liu Z 2022 J. Lightwave Technol. 40 2988
[10] Zamzuri A K, Mahdi M A, Ahmad A, Ali M I Md and AlMansoori M H 2007 Opt. Express 15 3000
[11] Hu K, Kabakova I V, Lefrancois S, Hudson D, He S and Eggleton B J 2014 Opt. Express 22 31884
[12] Mamdoohi G, Sarmani A R, Bakar M H A and Mahdi M A 2018 IEEE Photon. J. 10 1
[13] Al-Alimi A W, Cholan N A, Salam S, Kamil Y M, Ahmed M H M and Mahdi M A 2021 Results in Physics 25 104149
[14] Al-Alimi A W, Khaleel W A, Sadeq S A, Cholan N A, Al-Mansoori M H, Ahmed M H M and Mahdi M A 2022 Opt. Laser Technol. 146 107464
[15] Bai S, Xiang Y and Zhang Z 2023 Chin. Phys. B 32 024209
[16] Huang P, Shu X and Zhang Z 2020 Opt. Express 28 28686
[17] Al-Alimi A W, Cholan N A, Shee Y G, Alresheedi M T, Goh C S and Mahdi M A 2022 Results in Physics 37 105469
[1] Interface state-based bound states in continuum and below-continuum-resonance modes with high-Q factors in the rotational periodic system
Jialing Yang(杨嘉玲), Aoqian Shi(史奥芊), Yuchen Peng(彭宇宸), Peng Peng(彭鹏), and Jianjun Liu(刘建军). Chin. Phys. B, 2024, 33(8): 084206.
[2] Frequency-tunable single-photon router based on a microresonator containing a driven three-level emitter
Jin-Song Huang(黄劲松), Jing-Lan Hu(胡菁兰), Yan-Ling Li(李艳玲), and Zhong-Hui Xu(徐中辉). Chin. Phys. B, 2024, 33(6): 064202.
[3] A novel dual-channel thermo-optic locking method for the whispering gallery mode microresonator
Wenjie Fan(范文杰), Wenyao Liu(刘文耀), Ziwen Pan(潘梓文), Rong Wang(王蓉), Lai Liu(刘来), Enbo Xing(邢恩博), Yanru Zhou(周彦汝), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2024, 33(5): 054206.
[4] High-frequency microwave cavity design for high-mass dark matter axion searches
Chi Zhang(张驰), Jia Wang(王佳), Chunguang Li(李春光), Shiguang Chen(陈石广), Hang Cheng(程航), Liang Sun(孙亮), and Yun Wu(吴云). Chin. Phys. B, 2024, 33(5): 054211.
[5] Dependence of Rydberg-atom-based sensor performance on different Rydberg atom populations in one atomic-vapor cell
Bo Wu(武博), Jiawei Yao(姚佳伟), Fengchuan Wu(吴逢川), Qiang An(安强), and Yunqi Fu(付云起). Chin. Phys. B, 2024, 33(2): 024205.
[6] Broadband bidirectional Brillouin-Raman random fiber laser with ultra-narrow linewidth
Qian Yang(杨茜), Yang Li(李阳), Hui Zou(邹辉), Jie Mei(梅杰), En-Ming Xu(徐恩明), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2024, 33(2): 024206.
[7] Finesse measurement for high-power optical enhancement cavity
Xin-Yi Lu(陆心怡), Xing Liu(柳兴), Qi-Li Tian(田其立), Huan Wang(王焕), Jia-Jun Wang(汪嘉俊), and Li-Xin Yan(颜立新). Chin. Phys. B, 2024, 33(1): 014205.
[8] Tailoring topological corner states in photonic crystals by near- and far-field coupling effects
Zhao-Jian Zhang(张兆健), Zhi-Hao Lan(兰智豪), Huan Chen(陈欢), Yang Yu(于洋), and Jun-Bo Yang(杨俊波). Chin. Phys. B, 2023, 32(12): 124201.
[9] Topological resonators based on hexagonal-star valley photonic crystals
Xin Wan(万鑫), Chenyang Peng(彭晨阳), Gang Li(李港), Junhao Yang(杨俊豪), and Xinyuan Qi(齐新元). Chin. Phys. B, 2023, 32(11): 114208.
[10] Dynamic light storage based on controllable electromagnetically induced transparency effect
Liu-Ying Zeng(曾柳莹), Jun-Fang Wu(吴俊芳), and Chao Li(李潮). Chin. Phys. B, 2023, 32(6): 064213.
[11] Local density of optical states calculated by the mode spectrum in stratified media
Ting Fu(傅廷), Jingxuan Chen(陈静瑄), Xueyou Wang(王学友), Yingqiu Dai(戴迎秋), Xuyan Zhou(周旭彦), Yufei Wang(王宇飞), Mingjin Wang(王明金), and Wanhua Zheng(郑婉华). Chin. Phys. B, 2023, 32(4): 040204.
[12] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[13] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[14] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[15] Spatiotemporal mode-locked multimode fiber laser with dissipative four-wave mixing effect
Ming-Wei Qiu(邱明伟), Chao-Qun Cai(蔡超群), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2022, 31(10): 104207.
No Suggested Reading articles found!