Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 054206    DOI: 10.1088/1674-1056/ad225f
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A novel dual-channel thermo-optic locking method for the whispering gallery mode microresonator

Wenjie Fan(范文杰)1, Wenyao Liu(刘文耀)1,2,†, Ziwen Pan(潘梓文)1, Rong Wang(王蓉)1, Lai Liu(刘来)1,2, Enbo Xing(邢恩博)1,2, Yanru Zhou(周彦汝)1,2, Jun Tang(唐军)1,2, and Jun Liu(刘俊)1,2
1 State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China;
2 Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
Abstract  Mode locking can be effectively achieved by using the thermo-optic effects in the whispering gallery mode (WGM) optical microcavity, without the help of external equipment. Therefore, it has the advantages of small size, low integration costs, and self-locking, which shows great potential for application. However, the conventional single-channel microcavity thermal-locking method that relies solely on internal thermal balance will inevitably be disturbed by the external environment. This limitation affects the locking time and stability. Therefore, in this paper, we propose a new method for closed-loop thermal locking of a dual-channel microcavity. The thermal locking of the signal laser and the thermal regulation of the control laser are carried out respectively by synchronously drawing a dual-path tapered fiber. The theoretical model of the thermal dynamics of the dual-channel microcavity system is established, and the influence of the control-laser power on the thermal locking of the signal laser is confirmed. The deviation between the locking voltage of the signal laser and the set point value is used as a closed-loop feedback parameter to achieve long-term and highly stable mode locking of the signal laser. The results show that in the 2.63 h thermal-locking test, the locking stability is an order of magnitude higher than that of the single tapered fiber. This solution addresses the issue of thermal locking being disrupted by the external environment, and offers new possibilities for important applications such as spectroscopy and micro-optical sensor devices.
Keywords:  optical microcavity      thermo-optic locking      thermal nonlinearity effect  
Received:  05 December 2023      Revised:  08 January 2024      Accepted manuscript online:  25 January 2024
PACS:  42.55.Sa (Microcavity and microdisk lasers)  
  78.20.N-  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB3203400), the National Natural Science Foundation of China (Grant Nos. U21A20141, 62273314, and 51821003), the Fundamental Research Program of Shanxi Province (Grant No. 202303021223001), and Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement (Grant No. 201905D121001).
Corresponding Authors:  Wenyao Liu     E-mail:  liuwenyao@nuc.edu.cn

Cite this article: 

Wenjie Fan(范文杰), Wenyao Liu(刘文耀), Ziwen Pan(潘梓文), Rong Wang(王蓉), Lai Liu(刘来), Enbo Xing(邢恩博), Yanru Zhou(周彦汝), Jun Tang(唐军), and Jun Liu(刘俊) A novel dual-channel thermo-optic locking method for the whispering gallery mode microresonator 2024 Chin. Phys. B 33 054206

[1] Vahala K J 2003 Nature 424 839
[2] Foreman M R, Swaim J D and Vollmer F 2015 Adv. Opt. Photon. 7 168
[3] Toropov N, Cabello G, Serrano M P, Gutha R R, Rafti M and Vollmer F 2021 Light: Science & Applications 10 42
[4] Chen C and Wang J 2020 Analyst 145 1605
[5] Gaeta A L, Lipson M and Kippenberg T J 2019 Nat. Photon. 13 158
[6] Spencer D T, Drake T, Briles T C, Stone J, Sinclair L C, Fredrick C, Li Q, Westly D, Ilic B R and Bluestone A 2018 Nature 557 81
[7] Kasumie S, Lei F, Ward J M, Jiang X, Yang L and Nic Chormaic S 2019 Laser Photonics Rev. 13 1900138
[8] Lin G, Coillet A and Chembo Y K 2017 Adv. Opt. Photonics 9 828
[9] Yang L, Armani D and Vahala K 2003 Appl. Phys. Lett. 83 825
[10] Jiang X F, Zou C L, Wang L, Gong Q and Xiao Y F 2016 Laser Photonics Rev. 10 40
[11] He L, Özdemir Ş K and Yang L 2013 Laser Photonics Rev. 7 60
[12] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[13] Jiang X, Wang M, Kuzyk M C, Oo T, Long G L and Wang H 2015 Opt. Express 23 27260
[14] Monifi F, Zhang J, Özdemir Ş K, Peng B, Liu Y X, Bo F, Nori F and Yang L 2016 Nat. Photon. 10 399
[15] Dong C, Fiore V, Kuzyk M C and Wang H 2012 Science 338 1609
[16] Khalili F Y and Danilishin S L 2016 Prog. Opt. 61 113
[17] Black E D 2001 Am. J. Phys. 69 79
[18] Carmon T, Yang L and Vahala K J 2004 Opt. Express 12 4742
[19] Carmon T, Kippenberg T J, Yang L, Rokhsari H, Spillane S and Vahala K J 2005 Opt. Express 13 3558
[20] Li J, Diddams S and Vahala K J 2014 Opt. Express 22 14559
[21] Zhang B, Liu W, Wang R, Pan Z, Li W, Wang X, Zhou Y, Xing E, Tang J and Liu J 2023 Opt. Commun. 530 129150
[22] Agarwal M and Teraoka I 2012 Appl. Phys. Lett. 101 251105
[23] Dong C H, He L, Xiao Y F, Gaddam V, Özdemir S, Han Z F, Guo G C and Yang L 2009 Appl. Phys. Lett. 94 231119
[24] Leviton D B and Frey B J 2006 Optomechanical Technologies for Astronomy 6273 800
[1] Improving resolution of superlens based on solid immersion mechanism
Zhanlei Hao(郝占磊), Yangyang Zhou(周杨阳), Bei Wu(吴贝),Yineng Liu(刘益能), and Huanyang Chen(陈焕阳). Chin. Phys. B, 2023, 32(6): 064211.
[2] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), and Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[3] Optomagnonically tunable whispering gallery cavity laser wavelength conversion
Yining Zhu(朱奕宁), Zixu Zhu(朱子虚), Anbang Pei(裴安邦), and Yong-Pan Gao(高永潘). Chin. Phys. B, 2023, 32(2): 024206.
[4] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[5] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[6] Photonic-plasmonic hybrid microcavities: Physics and applications
Hongyu Zhang(张红钰), Wen Zhao(赵闻), Yaotian Liu(刘耀天), Jiali Chen(陈佳丽), Xinyue Wang(王欣月), and Cuicui Lu(路翠翠). Chin. Phys. B, 2021, 30(11): 117801.
[7] Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature
Huying Zheng(郑湖颖), Zhiyang Chen(陈智阳), Hai Zhu(朱海), Ziying Tang(汤梓荧), Yaqi Wang(王亚琪), Haiyuan Wei(韦海园), Chongxin Shan(单崇新). Chin. Phys. B, 2020, 29(9): 097302.
[8] High-efficiency photon-electron coupling resonant emission in GaN-based microdisks on Si
Menghan Liu(刘梦涵), Peng Chen(陈鹏), Zili Xie(谢自力), Xiangqian Xiu(修向前), Dunjun Chen(陈敦军), Bin Liu(刘斌), Ping Han(韩平), Yi Shi(施毅), Rong Zhang(张荣), Youdou Zheng(郑有炓), Kai Cheng(程凯), Liyang Zhang(张丽阳). Chin. Phys. B, 2020, 29(8): 084203.
[9] Fabrication and characterization of Ge–Ga–Sb–S glass microsphere lasers operating at~1.9 μm
Kun Yang(杨坤), Shixun Dai(戴世勋), Yuehao Wu(吴越豪), Qiuhua Nie(聂秋华). Chin. Phys. B, 2018, 27(11): 117701.
[10] Research progress of low-dimensional metal halide perovskites for lasing applications
Zhen Liu(刘镇), Chun Li(李淳), Qiu-Yu Shang(尚秋宇), Li-Yun Zhao(赵丽云), Yang-Guang Zhong(钟阳光), Yan Gao(高燕), Wen-Na Du(杜文娜), Yang Mi(米阳), Jie Chen(陈杰), Shuai Zhang(张帅), Xin-Feng Liu(刘新风), Ying-Shuang Fu(付英双), Qing Zhang(张青). Chin. Phys. B, 2018, 27(11): 114209.
[11] Electrically pumped metallic and plasmonic nanolasers
Martin T Hill. Chin. Phys. B, 2018, 27(11): 114210.
[12] Square microcavity semiconductor lasers
Yuede Yang(杨跃德), Haizhong Weng(翁海中), Youzeng Hao(郝友增), Jinlong Xiao(肖金龙), Yongzhen Huang(黄永箴). Chin. Phys. B, 2018, 27(11): 114212.
[13] Silica-based microcavity fabricated by wet etching
H Long(龙浩), W Yang(杨文), L Y Ying(应磊莹), B P Zhang(张保平). Chin. Phys. B, 2017, 26(5): 054211.
[14] Microscale vortex laser with controlled topological charge
Xing-Yuan Wang(王兴远), Hua-Zhou Chen(陈华洲), Ying Li(黎颖), Bo Li(李波), Ren-Min Ma(马仁敏). Chin. Phys. B, 2016, 25(12): 124211.
[15] Lasing dynamics study by femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy
Wei Dang(党伟), Qing Liao(廖清), Peng-Cheng Mao(毛鹏程), Hong-Bing Fu(付红兵), Yu-Xiang Weng(翁羽翔). Chin. Phys. B, 2016, 25(5): 054207.
No Suggested Reading articles found!