Special Issue:
SPECIAL TOPIC — Optical field manipulation
|
SPECIAL TOPIC—Optical field manipulation |
Prev
Next
|
|
|
Spatiotemporal mode-locked multimode fiber laser with dissipative four-wave mixing effect |
Ming-Wei Qiu(邱明伟), Chao-Qun Cai(蔡超群), and Zu-Xing Zhang(张祖兴)† |
Advanced Photonic Technology Laboratory, College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China |
|
|
Abstract The high degree of freedom and novel nonlinear phenomena of multimode fiber are attracting attention. In this work, we demonstrate a spatiotemporal mode-locked multimode fiber laser, which relies on microfiber knot resonance (MKR) via dissipative four-wave-mixing (DFMW) to achieve high-repetition-rate pulses. Apart from that, DFMW mode locking with switchable central wavelengths can also be obtained. It was further found that high pulse energy induced nonlinear effect of the dominant mode-locking mechanism transforming from DFMW to nonlinear Kerr beam cleaning effect (NL-KBC). The experimental results are valuable for further comprehending the dynamic characteristics of spatiotemporal mode-locked multimode fiber lasers, facilitating them much more accessible for applications.
|
Received: 26 March 2022
Revised: 03 May 2022
Accepted manuscript online:
|
PACS:
|
42.60.Da
|
(Resonators, cavities, amplifiers, arrays, and rings)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
42.60.Jf
|
(Beam characteristics: profile, intensity, and power; spatial pattern formation)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
Fund: Project partially supported by the National Natural Science Foundation of China (Grant Nos. 91950105 and 62175116) and the 1311 Talent Plan of Nanjing University of Posts and Telecommunications. |
Corresponding Authors:
Zu-Xing Zhang
E-mail: zxzhang@njupt.edu.cn
|
Cite this article:
Ming-Wei Qiu(邱明伟), Chao-Qun Cai(蔡超群), and Zu-Xing Zhang(张祖兴) Spatiotemporal mode-locked multimode fiber laser with dissipative four-wave mixing effect 2022 Chin. Phys. B 31 104207
|
[1] Essiambre R, Kramer G, Winzer P, Foschini G and Goebel B 2010 J. Lightwave Technol. 28 662 [2] Yam S H and Achten F 2007 J. Opt. Netw. 6 527 [3] Torres C V, Schroder J, Fulop A L, Mazur M, Lundberg L, Helgason O, Karlsson M and Andreksonet P 2019 J. Lightwave Technol. 37 1663 [4] Harun S W, Saidin N, Zen D I M, Ali N M, Ahmad H, Ahmad F and Dimyati K 2013 Chin. Phys. Lett. 30 094204 [5] Nava G, Osellame R, Ramponi R and Vishnubhatla K C 2013 Opt. Mater. Express 3 612 [6] Huang Y, Xie X, Li M, Xu M and Long J 2021 Opt. Express 29 4453 [7] Harshavardhan Reddy P, Kadir N A A, Paul M C, Das S, Dhar A, Ismail E I, Latiff A A and Harun S W 2017 Chin. Phys. Lett. 34 084203 [8] Gu C, Zuo Z, Luo D, Peng D, Di Y, Zou X, Yang L and Li W 2019 Opt. Lett. 44 5848 [9] Cheng H, Wang W, Zhou Y, Qiao T, Lin W, Guo Y, Xu S and Yang Z 2018 Opt. Express 26 16411 [10] Zhao Q, Gao G, Cong Z, Zhang Z, Liu G, Liu Z, Zhang X and Zhao Z 2022 Opt. Express 30 3611 [11] Zhao Z, Jin L, Set S Y and Yamashita S 2021 Opt. Lett. 46 3621 [12] Sakamoto T and Yoshioka K 2021 Opt. Lett. 46 4642 [13] Magne J, Bolger J, Rochette M, LaRochelle S, Chen L R, Eggleton B J and Azana J 2006 J. Lightwave Technol. 24 2091 [14] Hong K H, Siddiqui A, Moses J, Gopinath J, Hybl J, Ilday F O, Fan T Y and Kartner F X 2008 Opt. Lett. 33 2473 [15] Regan B J, Nikogosyan D N, Paipulas D, Kudriaov V and Sirutkaitis V 2012 Opt. Fiber Technol. 18 88 [16] Krcmarík D, Slavík R, Park Y and Azana J 2009 Opt. Express 17 7074 [17] Yoshida E and Nakazawa M 1997 Opt. Lett. 22 1409 [18] Jasim A A, Zulkifli A Z, Muhammad M Z, Ahmad H and Harun S W 2012 Chin. Phys. Lett. 29 084204 [19] Guan H, Li Z Y, Shen H H, Wang R and Yu Y D 2017 Chin. Phys. Lett. 34 084204 [20] Peccianti M, Pasquazi A, Park Y, Little B E, Chu S T, Moss D J and Morandotti R 2012 Nat. Commun. 3 85 [21] Ding Z X, Huang Z N, Chen Y, Mou C B, Lu Y Q and Xu F 2020 Adv. Photon. 2 026002 [22] Liu M, Tang R, Luo A P, Xu W and Luo Z C 2018 Photon. Res. 6 C1 [23] Tegin U, Rahmani B, Kakkava E, Psaltis D and Moser C 2020 Adv. Photon. 2 056005 [24] Niang A, Levchenko A, Semjonov S, Lipatov D and Egorova O 2020 Photon. J. 12 1 [25] Tegin U and Ortaç B 2017 Photon. Technol. Lett. 24 1 [26] Hansson T, Tonello A, Mansuryan T, Mangini F, Zitelli M, Ferraro M, Niang A, Crescenzi R, Wabnitz S and Couderc V 2020 Opt. Express 28 24005 [27] Qin H, Xiao X, Wang P and Yang C 2018 Opt. Lett. 43 1982 [28] Tegin U, Kakkava E, Rahmani B, Psaltis D and Moser C 2019 Optica 6 1412 [29] Ma Z L, Long J G, Lin W, Hong W, Cui H, Luo Z, Xu W, Likhachev M, Aleshkina S, Mashinsky V, Yashkov M and Luo A 2021 Opt. Express 29 9465 [30] Wright L G, Wabnitz S, Christodoulides D and Wise F W 2015 J. Lightwave Technol. 115 223902 [31] Coen S and Haelterman M 2001 Opt. Lett. 26 39 [32] Chen G, Li W, Wang G, Zhang W, Zeng C and Zhao W 2019 Photon. Res. 7 187 [33] Qiu M W, Chen M M and Zhang Z X 2021 Photon. Technol. Lett. 33 1073 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|